Journal article 1502 views 384 downloads
Modelling ozone disinfection process for creating COVID-19 secure spaces
International Journal of Numerical Methods for Heat & Fluid Flow, Volume: 32, Issue: 1
Swansea University Authors: Hamid Tamaddon Jahromi, Sam Rolland , Jason Jones , Alberto Coccarelli , Igor Sazonov , Chris Kershaw, Chedly Tizaoui , Peter Holliman , David Worsley , Hywel Thomas, Perumal Nithiarasu
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution Non-commercial International License 4.0 (CC BY-NC 4.0)
Download (2.3MB)
DOI (Published version): 10.1108/hff-12-2020-0797
Abstract
PurposeA novel modelling approach is proposed to study ozone distribution and destruction in indoor spaces. The level of ozone gas concentration in the air, confined within an indoor space during an ozone-based disinfection process, is analysed. The purpose of this work is to investigate how ozone i...
Published in: | International Journal of Numerical Methods for Heat & Fluid Flow |
---|---|
ISSN: | 0961-5539 |
Published: |
Emerald
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa56337 |
first_indexed |
2021-02-26T13:22:50Z |
---|---|
last_indexed |
2022-01-05T04:23:05Z |
id |
cronfa56337 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-01-04T15:30:30.8123789</datestamp><bib-version>v2</bib-version><id>56337</id><entry>2021-02-26</entry><title>Modelling ozone disinfection process for creating COVID-19 secure spaces</title><swanseaauthors><author><sid>b3a1417ca93758b719acf764c7ced1c5</sid><firstname>Hamid</firstname><surname>Tamaddon Jahromi</surname><name>Hamid Tamaddon Jahromi</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c14ac34a71e9c058d1d2a353b44a24cd</sid><ORCID>0000-0003-0455-5620</ORCID><firstname>Sam</firstname><surname>Rolland</surname><name>Sam Rolland</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>aa4865d48c53a0df1c1547171826eab9</sid><ORCID>0000-0002-7715-1857</ORCID><firstname>Jason</firstname><surname>Jones</surname><name>Jason Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>06fd3332e5eb3cf4bb4e75a24f49149d</sid><ORCID>0000-0003-1511-9015</ORCID><firstname>Alberto</firstname><surname>Coccarelli</surname><name>Alberto Coccarelli</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>05a507952e26462561085fb6f62c8897</sid><ORCID>0000-0001-6685-2351</ORCID><firstname>Igor</firstname><surname>Sazonov</surname><name>Igor Sazonov</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>712418e62ef36662d4034e102107a1c8</sid><firstname>Chris</firstname><surname>Kershaw</surname><name>Chris Kershaw</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4b34a0286d3c0b0b081518fa6987031d</sid><ORCID>0000-0003-2159-7881</ORCID><firstname>Chedly</firstname><surname>Tizaoui</surname><name>Chedly Tizaoui</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c8f52394d776279c9c690dc26066ddf9</sid><ORCID>0000-0002-9911-8513</ORCID><firstname>Peter</firstname><surname>Holliman</surname><name>Peter Holliman</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c426b1c1b0123d7057c1b969083cea69</sid><ORCID>0000-0002-9956-6228</ORCID><firstname>David</firstname><surname>Worsley</surname><name>David Worsley</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>220aa71c1fd5870f2f300017f8aba0aa</sid><firstname>Hywel</firstname><surname>Thomas</surname><name>Hywel Thomas</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>3b28bf59358fc2b9bd9a46897dbfc92d</sid><ORCID>0000-0002-4901-2980</ORCID><firstname>Perumal</firstname><surname>Nithiarasu</surname><name>Perumal Nithiarasu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-02-26</date><deptcode>ACEM</deptcode><abstract>PurposeA novel modelling approach is proposed to study ozone distribution and destruction in indoor spaces. The level of ozone gas concentration in the air, confined within an indoor space during an ozone-based disinfection process, is analysed. The purpose of this work is to investigate how ozone is distributed in time within an enclosed space.Design/methodology/approachA computational methodology for predicting the space- and time-dependent ozone concentration within the room across the consecutive steps of the disinfection process (generation, dwelling and destruction modes) is proposed. The emission and removal of ozone from the air volume are possible by means of a generator located in the middle of the room. This model also accounts for ozone reactions and decay kinetics, and gravity effect on the air.FindingThis work is validated against experimental measurements at different locations in the room during the disinfection cycle. The numerical results are in good agreement with the experimental data. This comparison proves that the presented methodology is able to provide accurate predictions of the time evolution of ozone concentration at different locations of the enclosed space.Originality/valueThis study introduces a novel computational methodology describing solute transport by turbulent flow for predicting the level of ozone concentration within a closed room during a COVID-19 disinfection process. A parametric study is carried out to evaluate the impact of system settings on the time variation of ozone concentration within the space considered.</abstract><type>Journal Article</type><journal>International Journal of Numerical Methods for Heat & Fluid Flow</journal><volume>32</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Emerald</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0961-5539</issnPrint><issnElectronic/><keywords>Ozone disinfection, Covid-19, Ozone decay rate, Concentration distribution, Unsteady Reynolds Average Navier Stokes, Scalar transport equation</keywords><publishedDay>19</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-05-19</publishedDate><doi>10.1108/hff-12-2020-0797</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2022-01-04T15:30:30.8123789</lastEdited><Created>2021-02-26T13:18:29.5832537</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Hamid</firstname><surname>Tamaddon Jahromi</surname><order>1</order></author><author><firstname>Sam</firstname><surname>Rolland</surname><orcid>0000-0003-0455-5620</orcid><order>2</order></author><author><firstname>Jason</firstname><surname>Jones</surname><orcid>0000-0002-7715-1857</orcid><order>3</order></author><author><firstname>Alberto</firstname><surname>Coccarelli</surname><orcid>0000-0003-1511-9015</orcid><order>4</order></author><author><firstname>Igor</firstname><surname>Sazonov</surname><orcid>0000-0001-6685-2351</orcid><order>5</order></author><author><firstname>Chris</firstname><surname>Kershaw</surname><order>6</order></author><author><firstname>Chedly</firstname><surname>Tizaoui</surname><orcid>0000-0003-2159-7881</orcid><order>7</order></author><author><firstname>Peter</firstname><surname>Holliman</surname><orcid>0000-0002-9911-8513</orcid><order>8</order></author><author><firstname>David</firstname><surname>Worsley</surname><orcid>0000-0002-9956-6228</orcid><order>9</order></author><author><firstname>Hywel</firstname><surname>Thomas</surname><order>10</order></author><author><firstname>Perumal</firstname><surname>Nithiarasu</surname><orcid>0000-0002-4901-2980</orcid><order>11</order></author></authors><documents><document><filename>56337__19384__74d1780891344cdfbe07d09a9ac3c8dc.pdf</filename><originalFilename>56337.pdf</originalFilename><uploaded>2021-02-26T13:21:31.5476460</uploaded><type>Output</type><contentLength>2412022</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution Non-commercial International License 4.0 (CC BY-NC 4.0)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-01-04T15:30:30.8123789 v2 56337 2021-02-26 Modelling ozone disinfection process for creating COVID-19 secure spaces b3a1417ca93758b719acf764c7ced1c5 Hamid Tamaddon Jahromi Hamid Tamaddon Jahromi true false c14ac34a71e9c058d1d2a353b44a24cd 0000-0003-0455-5620 Sam Rolland Sam Rolland true false aa4865d48c53a0df1c1547171826eab9 0000-0002-7715-1857 Jason Jones Jason Jones true false 06fd3332e5eb3cf4bb4e75a24f49149d 0000-0003-1511-9015 Alberto Coccarelli Alberto Coccarelli true false 05a507952e26462561085fb6f62c8897 0000-0001-6685-2351 Igor Sazonov Igor Sazonov true false 712418e62ef36662d4034e102107a1c8 Chris Kershaw Chris Kershaw true false 4b34a0286d3c0b0b081518fa6987031d 0000-0003-2159-7881 Chedly Tizaoui Chedly Tizaoui true false c8f52394d776279c9c690dc26066ddf9 0000-0002-9911-8513 Peter Holliman Peter Holliman true false c426b1c1b0123d7057c1b969083cea69 0000-0002-9956-6228 David Worsley David Worsley true false 220aa71c1fd5870f2f300017f8aba0aa Hywel Thomas Hywel Thomas true false 3b28bf59358fc2b9bd9a46897dbfc92d 0000-0002-4901-2980 Perumal Nithiarasu Perumal Nithiarasu true false 2021-02-26 ACEM PurposeA novel modelling approach is proposed to study ozone distribution and destruction in indoor spaces. The level of ozone gas concentration in the air, confined within an indoor space during an ozone-based disinfection process, is analysed. The purpose of this work is to investigate how ozone is distributed in time within an enclosed space.Design/methodology/approachA computational methodology for predicting the space- and time-dependent ozone concentration within the room across the consecutive steps of the disinfection process (generation, dwelling and destruction modes) is proposed. The emission and removal of ozone from the air volume are possible by means of a generator located in the middle of the room. This model also accounts for ozone reactions and decay kinetics, and gravity effect on the air.FindingThis work is validated against experimental measurements at different locations in the room during the disinfection cycle. The numerical results are in good agreement with the experimental data. This comparison proves that the presented methodology is able to provide accurate predictions of the time evolution of ozone concentration at different locations of the enclosed space.Originality/valueThis study introduces a novel computational methodology describing solute transport by turbulent flow for predicting the level of ozone concentration within a closed room during a COVID-19 disinfection process. A parametric study is carried out to evaluate the impact of system settings on the time variation of ozone concentration within the space considered. Journal Article International Journal of Numerical Methods for Heat & Fluid Flow 32 1 Emerald 0961-5539 Ozone disinfection, Covid-19, Ozone decay rate, Concentration distribution, Unsteady Reynolds Average Navier Stokes, Scalar transport equation 19 5 2021 2021-05-19 10.1108/hff-12-2020-0797 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2022-01-04T15:30:30.8123789 2021-02-26T13:18:29.5832537 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Hamid Tamaddon Jahromi 1 Sam Rolland 0000-0003-0455-5620 2 Jason Jones 0000-0002-7715-1857 3 Alberto Coccarelli 0000-0003-1511-9015 4 Igor Sazonov 0000-0001-6685-2351 5 Chris Kershaw 6 Chedly Tizaoui 0000-0003-2159-7881 7 Peter Holliman 0000-0002-9911-8513 8 David Worsley 0000-0002-9956-6228 9 Hywel Thomas 10 Perumal Nithiarasu 0000-0002-4901-2980 11 56337__19384__74d1780891344cdfbe07d09a9ac3c8dc.pdf 56337.pdf 2021-02-26T13:21:31.5476460 Output 2412022 application/pdf Accepted Manuscript true Released under the terms of a Creative Commons Attribution Non-commercial International License 4.0 (CC BY-NC 4.0) true eng https://creativecommons.org/licenses/by-nc/4.0/ |
title |
Modelling ozone disinfection process for creating COVID-19 secure spaces |
spellingShingle |
Modelling ozone disinfection process for creating COVID-19 secure spaces Hamid Tamaddon Jahromi Sam Rolland Jason Jones Alberto Coccarelli Igor Sazonov Chris Kershaw Chedly Tizaoui Peter Holliman David Worsley Hywel Thomas Perumal Nithiarasu |
title_short |
Modelling ozone disinfection process for creating COVID-19 secure spaces |
title_full |
Modelling ozone disinfection process for creating COVID-19 secure spaces |
title_fullStr |
Modelling ozone disinfection process for creating COVID-19 secure spaces |
title_full_unstemmed |
Modelling ozone disinfection process for creating COVID-19 secure spaces |
title_sort |
Modelling ozone disinfection process for creating COVID-19 secure spaces |
author_id_str_mv |
b3a1417ca93758b719acf764c7ced1c5 c14ac34a71e9c058d1d2a353b44a24cd aa4865d48c53a0df1c1547171826eab9 06fd3332e5eb3cf4bb4e75a24f49149d 05a507952e26462561085fb6f62c8897 712418e62ef36662d4034e102107a1c8 4b34a0286d3c0b0b081518fa6987031d c8f52394d776279c9c690dc26066ddf9 c426b1c1b0123d7057c1b969083cea69 220aa71c1fd5870f2f300017f8aba0aa 3b28bf59358fc2b9bd9a46897dbfc92d |
author_id_fullname_str_mv |
b3a1417ca93758b719acf764c7ced1c5_***_Hamid Tamaddon Jahromi c14ac34a71e9c058d1d2a353b44a24cd_***_Sam Rolland aa4865d48c53a0df1c1547171826eab9_***_Jason Jones 06fd3332e5eb3cf4bb4e75a24f49149d_***_Alberto Coccarelli 05a507952e26462561085fb6f62c8897_***_Igor Sazonov 712418e62ef36662d4034e102107a1c8_***_Chris Kershaw 4b34a0286d3c0b0b081518fa6987031d_***_Chedly Tizaoui c8f52394d776279c9c690dc26066ddf9_***_Peter Holliman c426b1c1b0123d7057c1b969083cea69_***_David Worsley 220aa71c1fd5870f2f300017f8aba0aa_***_Hywel Thomas 3b28bf59358fc2b9bd9a46897dbfc92d_***_Perumal Nithiarasu |
author |
Hamid Tamaddon Jahromi Sam Rolland Jason Jones Alberto Coccarelli Igor Sazonov Chris Kershaw Chedly Tizaoui Peter Holliman David Worsley Hywel Thomas Perumal Nithiarasu |
author2 |
Hamid Tamaddon Jahromi Sam Rolland Jason Jones Alberto Coccarelli Igor Sazonov Chris Kershaw Chedly Tizaoui Peter Holliman David Worsley Hywel Thomas Perumal Nithiarasu |
format |
Journal article |
container_title |
International Journal of Numerical Methods for Heat & Fluid Flow |
container_volume |
32 |
container_issue |
1 |
publishDate |
2021 |
institution |
Swansea University |
issn |
0961-5539 |
doi_str_mv |
10.1108/hff-12-2020-0797 |
publisher |
Emerald |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
PurposeA novel modelling approach is proposed to study ozone distribution and destruction in indoor spaces. The level of ozone gas concentration in the air, confined within an indoor space during an ozone-based disinfection process, is analysed. The purpose of this work is to investigate how ozone is distributed in time within an enclosed space.Design/methodology/approachA computational methodology for predicting the space- and time-dependent ozone concentration within the room across the consecutive steps of the disinfection process (generation, dwelling and destruction modes) is proposed. The emission and removal of ozone from the air volume are possible by means of a generator located in the middle of the room. This model also accounts for ozone reactions and decay kinetics, and gravity effect on the air.FindingThis work is validated against experimental measurements at different locations in the room during the disinfection cycle. The numerical results are in good agreement with the experimental data. This comparison proves that the presented methodology is able to provide accurate predictions of the time evolution of ozone concentration at different locations of the enclosed space.Originality/valueThis study introduces a novel computational methodology describing solute transport by turbulent flow for predicting the level of ozone concentration within a closed room during a COVID-19 disinfection process. A parametric study is carried out to evaluate the impact of system settings on the time variation of ozone concentration within the space considered. |
published_date |
2021-05-19T07:56:33Z |
_version_ |
1821300798321065984 |
score |
11.047565 |