No Cover Image

Journal article 54 views 7 downloads

Structural integrity of DEMO divertor target assessed by neutron tomography / Triestino Minniti, Frank Schoofs, Llion Evans, Winfried Kockelmann, Jeong-Ha You, Heather Lewtas

Fusion Engineering and Design, Volume: 169, Start page: 112661

Swansea University Author: Llion Evans

  • 56948 (2).pdf

    PDF | Version of Record

    Crown Copyright © 2021 This is an open access article under the Open Government License (OGL)

    Download (7.01MB)

Abstract

The divertor target plates are the most exposed in-vessel components to high heat flux loads in a fusion reactor due to a combination of plasma bombardment, radiation and nuclear heating. Reliable exhaust systems of such a huge thermal power required a robust and durable divertor target with a suffi...

Full description

Published in: Fusion Engineering and Design
ISSN: 0920-3796
Published: Elsevier BV 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa56948
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The divertor target plates are the most exposed in-vessel components to high heat flux loads in a fusion reactor due to a combination of plasma bombardment, radiation and nuclear heating. Reliable exhaust systems of such a huge thermal power required a robust and durable divertor target with a sufficiently large heat removal capability and lifetime. In this context, it is pivotal to develop non-destructive evaluation methods to assess the structural integrity of this component that, if compromised could reduced its lifetime. In this work we have demonstrated for the first time the feasibility of using neutron tomography to detect volumetric defects within DEMO divertor mock-ups with a spatial resolution of the order of hundreds of micrometers. Neutron tomography is applicable for studying complex structures, often manufactured from exotic materials which are not favourable for conventional non-destructive evaluation methods. This technique could be effectively used during research and development cycles of fusion component design or for quality assurance during manufacturing.
Keywords: Divertor target, Tungsten, Monoblock, CuCrZr, Neutron tomography, Non-destructive evaluation, Qualification
College: College of Engineering
Start Page: 112661