Conference Paper/Proceeding/Abstract 706 views 28 downloads
Completeness Characterization of Type-I Box Splines
Geometric Challenges in Isogeometric Analysis. Springer INdAM Series, Volume: 49, Pages: 279 - 304
Swansea University Author: Nelly Villamizar
-
PDF | Accepted Manuscript
Download (618.99KB)
DOI (Published version): 10.1007/978-3-030-92313-6_12
Abstract
We present a completeness characterization of box splines on three-directionaltriangulations, also called Type-I box spline spaces, based on edge-contact smoothness properties.For any given Type-I box spline, of specific maximum degree and order of globalsmoothness, our results allow to identify the...
Published in: | Geometric Challenges in Isogeometric Analysis. Springer INdAM Series |
---|---|
ISBN: | 9783030923129 9783030923136 |
ISSN: | 2281-518X 2281-5198 |
Published: |
Cham
Springer International Publishing
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa56991 |
first_indexed |
2021-05-31T22:26:18Z |
---|---|
last_indexed |
2024-11-14T12:11:03Z |
id |
cronfa56991 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-07-29T15:38:58.0902314</datestamp><bib-version>v2</bib-version><id>56991</id><entry>2021-05-31</entry><title>Completeness Characterization of Type-I Box Splines</title><swanseaauthors><author><sid>41572bcee47da6ba274ecd1828fbfef4</sid><ORCID>0000-0002-8741-7225</ORCID><firstname>Nelly</firstname><surname>Villamizar</surname><name>Nelly Villamizar</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-05-31</date><deptcode>MACS</deptcode><abstract>We present a completeness characterization of box splines on three-directionaltriangulations, also called Type-I box spline spaces, based on edge-contact smoothness properties.For any given Type-I box spline, of specific maximum degree and order of globalsmoothness, our results allow to identify the local linear subspace of polynomials spanned by the box spline translates. We use the global super-smoothness properties of box splines as well as the additional super-smoothness conditions at edges to characterize the spline space spanned by the box spline translates. Subsequently, we prove the completeness of this space space with respect to the local polynomial space induced by the box spline translates. The completeness property allows the construction of hierarchical spaces spanned by the translatesof box splines for any polynomial degree on multilevel Type-I grids. We provide a basis for these hierarchical box spline spaces under explicit geometric conditions of the domain.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Geometric Challenges in Isogeometric Analysis. Springer INdAM Series</journal><volume>49</volume><journalNumber/><paginationStart>279</paginationStart><paginationEnd>304</paginationEnd><publisher>Springer International Publishing</publisher><placeOfPublication>Cham</placeOfPublication><isbnPrint>9783030923129</isbnPrint><isbnElectronic>9783030923136</isbnElectronic><issnPrint>2281-518X</issnPrint><issnElectronic>2281-5198</issnElectronic><keywords/><publishedDay>9</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-08-09</publishedDate><doi>10.1007/978-3-030-92313-6_12</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference>EP/V012835/1, The Alliance Hubert Curien Programme reference: 515492678</projectreference><lastEdited>2024-07-29T15:38:58.0902314</lastEdited><Created>2021-05-31T23:21:25.7583325</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Nelly</firstname><surname>Villamizar</surname><orcid>0000-0002-8741-7225</orcid><order>1</order></author><author><firstname>Angelos</firstname><surname>Mantzaflaris</surname><order>2</order></author><author><firstname>Bert</firstname><surname>Jüttler</surname><order>3</order></author></authors><documents><document><filename>56991__20034__d50d688bcab24dd9acc97b9819bb39d3.pdf</filename><originalFilename>Villamizar_Mantzaflaris_Juettler_2021.pdf</originalFilename><uploaded>2021-05-31T23:25:24.3291566</uploaded><type>Output</type><contentLength>633850</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2023-08-09T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-07-29T15:38:58.0902314 v2 56991 2021-05-31 Completeness Characterization of Type-I Box Splines 41572bcee47da6ba274ecd1828fbfef4 0000-0002-8741-7225 Nelly Villamizar Nelly Villamizar true false 2021-05-31 MACS We present a completeness characterization of box splines on three-directionaltriangulations, also called Type-I box spline spaces, based on edge-contact smoothness properties.For any given Type-I box spline, of specific maximum degree and order of globalsmoothness, our results allow to identify the local linear subspace of polynomials spanned by the box spline translates. We use the global super-smoothness properties of box splines as well as the additional super-smoothness conditions at edges to characterize the spline space spanned by the box spline translates. Subsequently, we prove the completeness of this space space with respect to the local polynomial space induced by the box spline translates. The completeness property allows the construction of hierarchical spaces spanned by the translatesof box splines for any polynomial degree on multilevel Type-I grids. We provide a basis for these hierarchical box spline spaces under explicit geometric conditions of the domain. Conference Paper/Proceeding/Abstract Geometric Challenges in Isogeometric Analysis. Springer INdAM Series 49 279 304 Springer International Publishing Cham 9783030923129 9783030923136 2281-518X 2281-5198 9 8 2022 2022-08-09 10.1007/978-3-030-92313-6_12 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University EP/V012835/1, The Alliance Hubert Curien Programme reference: 515492678 2024-07-29T15:38:58.0902314 2021-05-31T23:21:25.7583325 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Nelly Villamizar 0000-0002-8741-7225 1 Angelos Mantzaflaris 2 Bert Jüttler 3 56991__20034__d50d688bcab24dd9acc97b9819bb39d3.pdf Villamizar_Mantzaflaris_Juettler_2021.pdf 2021-05-31T23:25:24.3291566 Output 633850 application/pdf Accepted Manuscript true 2023-08-09T00:00:00.0000000 true eng |
title |
Completeness Characterization of Type-I Box Splines |
spellingShingle |
Completeness Characterization of Type-I Box Splines Nelly Villamizar |
title_short |
Completeness Characterization of Type-I Box Splines |
title_full |
Completeness Characterization of Type-I Box Splines |
title_fullStr |
Completeness Characterization of Type-I Box Splines |
title_full_unstemmed |
Completeness Characterization of Type-I Box Splines |
title_sort |
Completeness Characterization of Type-I Box Splines |
author_id_str_mv |
41572bcee47da6ba274ecd1828fbfef4 |
author_id_fullname_str_mv |
41572bcee47da6ba274ecd1828fbfef4_***_Nelly Villamizar |
author |
Nelly Villamizar |
author2 |
Nelly Villamizar Angelos Mantzaflaris Bert Jüttler |
format |
Conference Paper/Proceeding/Abstract |
container_title |
Geometric Challenges in Isogeometric Analysis. Springer INdAM Series |
container_volume |
49 |
container_start_page |
279 |
publishDate |
2022 |
institution |
Swansea University |
isbn |
9783030923129 9783030923136 |
issn |
2281-518X 2281-5198 |
doi_str_mv |
10.1007/978-3-030-92313-6_12 |
publisher |
Springer International Publishing |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
We present a completeness characterization of box splines on three-directionaltriangulations, also called Type-I box spline spaces, based on edge-contact smoothness properties.For any given Type-I box spline, of specific maximum degree and order of globalsmoothness, our results allow to identify the local linear subspace of polynomials spanned by the box spline translates. We use the global super-smoothness properties of box splines as well as the additional super-smoothness conditions at edges to characterize the spline space spanned by the box spline translates. Subsequently, we prove the completeness of this space space with respect to the local polynomial space induced by the box spline translates. The completeness property allows the construction of hierarchical spaces spanned by the translatesof box splines for any polynomial degree on multilevel Type-I grids. We provide a basis for these hierarchical box spline spaces under explicit geometric conditions of the domain. |
published_date |
2022-08-09T14:11:22Z |
_version_ |
1822139752004976640 |
score |
11.541055 |