No Cover Image

Journal article 48 views

Thin-films on cellulose paper to construct thermoelectric generator of promising power outputs suitable for low-grade heat recovery / Rafiq Mulla, Daniel Jones, Charlie Dunnill

Materials Today Communications, Volume: 29, Start page: 102738

Swansea University Authors: Rafiq Mulla, Daniel Jones, Charlie Dunnill

  • Accepted Manuscript under embargo until: 25th August 2022

Abstract

Here, cellulose paper-based thermoelectric generators packaged inside Kapton layers are fabricated that demonstrate enhanced physical stability and flexibility with impressive power outputs at low temperature heating. The work introduces a successful combination of copper iodide (CuI) and bismuth (B...

Full description

Published in: Materials Today Communications
ISSN: 2352-4928
Published: Elsevier BV 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57692
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Here, cellulose paper-based thermoelectric generators packaged inside Kapton layers are fabricated that demonstrate enhanced physical stability and flexibility with impressive power outputs at low temperature heating. The work introduces a successful combination of copper iodide (CuI) and bismuth (Bi) coated cellulose papers, two non-toxic and simple conductors which act as p-type and n-type legs in the generator, respectively. The power output characteristics of a generator comprising ten p-n junctions are measured and analysed at different temperature gradients. A high output voltage of 84.5 mV and corresponding output power of 215 nW are obtained from the device at a temperature difference (ΔT) of ~50 ºC, which is comparable to expensive and toxic thermoelectric devices reported in the literature. The presented device fabrication method is a very simple and economical approach to fabricate paper based eco-friendly thermoelectric devices that can be used for low-grade heat conversion applications.
Keywords: Thermoelectric, CuIpaper generator, bismuth, device fabrication
College: College of Engineering
Start Page: 102738