No Cover Image

Journal article 27 views 15 downloads

Coupling the U.K. Earth System Model to dynamic models of the Greenland and Antarctic ice sheets

Robin S. Smith, Pierre Mathiot, Antony Siahaan, Victoria Lee, Stephen Cornford Orcid Logo, Jonathan M. Gregory, Antony J. Payne, Adrian Jenkins, Paul R. Holland, Jeff K. Ridley, Colin G. Jones

Journal of Advances in Modeling Earth Systems, Volume: 13, Issue: 10, Start page: e2021MS002520

Swansea University Author: Stephen Cornford Orcid Logo

  • 2021MS002520.pdf

    PDF | Version of Record

    © 2021 The Authors. This is an open access article under the terms of the Creative Commons Attribution License

    Download (2.94MB)

Check full text

DOI (Published version): 10.1029/2021ms002520

Abstract

The physical interactions between ice sheets and the atmosphere and ocean around them are major factors in determining the state of the climate system, yet many current Earth System models omit them entirely or treat them very simply. In this work we describe how models of the Greenland and Antarcti...

Full description

Published in: Journal of Advances in Modeling Earth Systems
ISSN: 1942-2466 1942-2466
Published: American Geophysical Union (AGU) 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa58432
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The physical interactions between ice sheets and the atmosphere and ocean around them are major factors in determining the state of the climate system, yet many current Earth System models omit them entirely or treat them very simply. In this work we describe how models of the Greenland and Antarctic ice sheets have been incorporated into the global U.K. Earth System model (UKESM1) via substantial technical developments with a two‐way coupling that passes fluxes of energy and water, and the topography of the ice sheet surface and ice shelf base, between the component models. File‐based coupling outside the running model executables is used throughout to pass information between the components, which we show is both physically appropriate and convenient within the UKESM1 structure. Ice sheet surface mass balance is computed in the land surface model using multi‐layer snowpacks in subgrid‐scale elevation ranges and compares well to the results of regional climate models. Ice shelf front discharge forms icebergs, which drift and melt in the ocean. Ice shelf basal mass balance is simulated using the full three‐dimensional ocean model representation of the circulation in ice‐shelf cavities. We show a range of example results, including from simulations with changes in ice sheet height and thickness of hundreds of meters, and changes in ice sheet grounding line and land‐terminating margin of many tens of kilometres, demonstrating that the coupled model is computationally stable when subject to significant changes in ice sheet geometry.
Keywords: ESM; ISM; climate; ice; sea-level; modeling
College: College of Science
Funders: Natural Environment Research Council (NERC) Grant: NE/N017978/1 Grant: NE/N01801X/1; European Commission (EC) Grant: H2020 641816; Met Office Hadley Center Climate Programme
Issue: 10
Start Page: e2021MS002520