Journal article 935 views 171 downloads
Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode
Energy Technology, Volume: 9, Issue: 12, Start page: 2100928
Swansea University Authors: Declan Hughes , Simone Meroni , Jeremy Barbe, Dimitrios Raptis, Harrison Lee, Trystan Watson , Wing Chung Tsoi
-
PDF | Version of Record
© 2021 The Authors. This is an open access article under the terms of the Creative Commons Attribution License
Download (1.12MB)
DOI (Published version): 10.1002/ente.202100928
Abstract
When designing spacefaring vehicles and orbital instrumentation, the onboard systems such as microelectronics and solar cells require shielding to protect them from degradation brought on by collisions with high‐energy particles. Perovskite solar cells (PSCs) have been shown to be much more radiatio...
Published in: | Energy Technology |
---|---|
ISSN: | 2194-4288 2194-4296 |
Published: |
Wiley
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa58615 |
first_indexed |
2021-11-11T12:25:14Z |
---|---|
last_indexed |
2022-01-05T04:27:07Z |
id |
cronfa58615 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-01-04T15:14:28.8108837</datestamp><bib-version>v2</bib-version><id>58615</id><entry>2021-11-11</entry><title>Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode</title><swanseaauthors><author><sid>5590b62d833b89a43926267b2b7a5c29</sid><ORCID>0000-0001-6415-3717</ORCID><firstname>Declan</firstname><surname>Hughes</surname><name>Declan Hughes</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>78a4cf80ab2fe6cca80716b5d357d8dd</sid><ORCID>0000-0002-6901-772X</ORCID><firstname>Simone</firstname><surname>Meroni</surname><name>Simone Meroni</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1a3a9e69fe724bafb47a7dbacb6f1845</sid><firstname>Jeremy</firstname><surname>Barbe</surname><name>Jeremy Barbe</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>75c81a7d972e97c42200ab0ebfa21908</sid><firstname>Dimitrios</firstname><surname>Raptis</surname><name>Dimitrios Raptis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0ef65494d0dda7f6aea5ead8bb6ce466</sid><ORCID/><firstname>Harrison</firstname><surname>Lee</surname><name>Harrison Lee</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e5f541df6635a9a8e1a579ff2de5d56</sid><ORCID>0000-0003-3836-5139</ORCID><firstname>Wing Chung</firstname><surname>Tsoi</surname><name>Wing Chung Tsoi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-11-11</date><deptcode>EAAS</deptcode><abstract>When designing spacefaring vehicles and orbital instrumentation, the onboard systems such as microelectronics and solar cells require shielding to protect them from degradation brought on by collisions with high‐energy particles. Perovskite solar cells (PSCs) have been shown to be much more radiation stable than Si and GaAs devices, while also providing the ability to be fabricated on flexible substrates. However, even PSCs have their limits, with higher fluences being a cause of degradation. Herein, a novel solution utilizing a screen‐printed, mesoporous carbon electrode to act bi‐functionally as an encapsulate and the electrode is presented. It is demonstrated that the carbon electrode PSCs can withstand proton irradiation up to 1 × 1015 protons cm−2 at 150 KeV with negligible losses (<0.07%) in power conversion efficiency. The 12 μm thick electrode acts as efficient shielding for the perovskite embedded in the mesoporous TiO2. Through Raman and photoluminescence spectroscopy, results suggest that the structural properties of the perovskite and carbon remain intact. Simulations of the device structure show that superior radiation protection comes in conjunction with good device performance. This work highlights the potential of using a carbon electrode for future space electronics which is not limited to only solar cells.</abstract><type>Journal Article</type><journal>Energy Technology</journal><volume>9</volume><journalNumber>12</journalNumber><paginationStart>2100928</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2194-4288</issnPrint><issnElectronic>2194-4296</issnElectronic><keywords>electrodes; mesoporous carbon; perovskite solar cells; proton irradiation; space</keywords><publishedDay>3</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-12-03</publishedDate><doi>10.1002/ente.202100928</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Airbus Endeavr Wales; Engineering and Physical Sciences Research Council. Grant Numbers: EP/T028513/1, EP/N020863/1; UKRI. Grant Number: EP/P032591/1; Innovate UK. Grant Number: 920036; European Regional Development Fund. Grant Number: c80892; Alexander von Humboldt Foundation</funders><lastEdited>2022-01-04T15:14:28.8108837</lastEdited><Created>2021-11-11T11:55:15.4269830</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Declan</firstname><surname>Hughes</surname><orcid>0000-0001-6415-3717</orcid><order>1</order></author><author><firstname>Simone</firstname><surname>Meroni</surname><orcid>0000-0002-6901-772X</orcid><order>2</order></author><author><firstname>Jeremy</firstname><surname>Barbe</surname><order>3</order></author><author><firstname>Dimitrios</firstname><surname>Raptis</surname><order>4</order></author><author><firstname>Harrison</firstname><surname>Lee</surname><orcid/><order>5</order></author><author><firstname>Keith C.</firstname><surname>Heasman</surname><order>6</order></author><author><firstname>Felix</firstname><surname>Lang</surname><order>7</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>8</order></author><author><firstname>Wing Chung</firstname><surname>Tsoi</surname><orcid>0000-0003-3836-5139</orcid><order>9</order></author></authors><documents><document><filename>58615__21489__f0236f8013804ffaae11d55f54cb275e.pdf</filename><originalFilename>ente.202100928.pdf</originalFilename><uploaded>2021-11-11T11:55:15.4099539</uploaded><type>Output</type><contentLength>1170335</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2021 The Authors. This is an open access article under the terms of the Creative Commons
Attribution License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-01-04T15:14:28.8108837 v2 58615 2021-11-11 Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode 5590b62d833b89a43926267b2b7a5c29 0000-0001-6415-3717 Declan Hughes Declan Hughes true false 78a4cf80ab2fe6cca80716b5d357d8dd 0000-0002-6901-772X Simone Meroni Simone Meroni true false 1a3a9e69fe724bafb47a7dbacb6f1845 Jeremy Barbe Jeremy Barbe true false 75c81a7d972e97c42200ab0ebfa21908 Dimitrios Raptis Dimitrios Raptis true false 0ef65494d0dda7f6aea5ead8bb6ce466 Harrison Lee Harrison Lee true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 7e5f541df6635a9a8e1a579ff2de5d56 0000-0003-3836-5139 Wing Chung Tsoi Wing Chung Tsoi true false 2021-11-11 EAAS When designing spacefaring vehicles and orbital instrumentation, the onboard systems such as microelectronics and solar cells require shielding to protect them from degradation brought on by collisions with high‐energy particles. Perovskite solar cells (PSCs) have been shown to be much more radiation stable than Si and GaAs devices, while also providing the ability to be fabricated on flexible substrates. However, even PSCs have their limits, with higher fluences being a cause of degradation. Herein, a novel solution utilizing a screen‐printed, mesoporous carbon electrode to act bi‐functionally as an encapsulate and the electrode is presented. It is demonstrated that the carbon electrode PSCs can withstand proton irradiation up to 1 × 1015 protons cm−2 at 150 KeV with negligible losses (<0.07%) in power conversion efficiency. The 12 μm thick electrode acts as efficient shielding for the perovskite embedded in the mesoporous TiO2. Through Raman and photoluminescence spectroscopy, results suggest that the structural properties of the perovskite and carbon remain intact. Simulations of the device structure show that superior radiation protection comes in conjunction with good device performance. This work highlights the potential of using a carbon electrode for future space electronics which is not limited to only solar cells. Journal Article Energy Technology 9 12 2100928 Wiley 2194-4288 2194-4296 electrodes; mesoporous carbon; perovskite solar cells; proton irradiation; space 3 12 2021 2021-12-03 10.1002/ente.202100928 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University SU Library paid the OA fee (TA Institutional Deal) Airbus Endeavr Wales; Engineering and Physical Sciences Research Council. Grant Numbers: EP/T028513/1, EP/N020863/1; UKRI. Grant Number: EP/P032591/1; Innovate UK. Grant Number: 920036; European Regional Development Fund. Grant Number: c80892; Alexander von Humboldt Foundation 2022-01-04T15:14:28.8108837 2021-11-11T11:55:15.4269830 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Declan Hughes 0000-0001-6415-3717 1 Simone Meroni 0000-0002-6901-772X 2 Jeremy Barbe 3 Dimitrios Raptis 4 Harrison Lee 5 Keith C. Heasman 6 Felix Lang 7 Trystan Watson 0000-0002-8015-1436 8 Wing Chung Tsoi 0000-0003-3836-5139 9 58615__21489__f0236f8013804ffaae11d55f54cb275e.pdf ente.202100928.pdf 2021-11-11T11:55:15.4099539 Output 1170335 application/pdf Version of Record true © 2021 The Authors. This is an open access article under the terms of the Creative Commons Attribution License true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode |
spellingShingle |
Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode Declan Hughes Simone Meroni Jeremy Barbe Dimitrios Raptis Harrison Lee Trystan Watson Wing Chung Tsoi |
title_short |
Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode |
title_full |
Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode |
title_fullStr |
Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode |
title_full_unstemmed |
Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode |
title_sort |
Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode |
author_id_str_mv |
5590b62d833b89a43926267b2b7a5c29 78a4cf80ab2fe6cca80716b5d357d8dd 1a3a9e69fe724bafb47a7dbacb6f1845 75c81a7d972e97c42200ab0ebfa21908 0ef65494d0dda7f6aea5ead8bb6ce466 a210327b52472cfe8df9b8108d661457 7e5f541df6635a9a8e1a579ff2de5d56 |
author_id_fullname_str_mv |
5590b62d833b89a43926267b2b7a5c29_***_Declan Hughes 78a4cf80ab2fe6cca80716b5d357d8dd_***_Simone Meroni 1a3a9e69fe724bafb47a7dbacb6f1845_***_Jeremy Barbe 75c81a7d972e97c42200ab0ebfa21908_***_Dimitrios Raptis 0ef65494d0dda7f6aea5ead8bb6ce466_***_Harrison Lee a210327b52472cfe8df9b8108d661457_***_Trystan Watson 7e5f541df6635a9a8e1a579ff2de5d56_***_Wing Chung Tsoi |
author |
Declan Hughes Simone Meroni Jeremy Barbe Dimitrios Raptis Harrison Lee Trystan Watson Wing Chung Tsoi |
author2 |
Declan Hughes Simone Meroni Jeremy Barbe Dimitrios Raptis Harrison Lee Keith C. Heasman Felix Lang Trystan Watson Wing Chung Tsoi |
format |
Journal article |
container_title |
Energy Technology |
container_volume |
9 |
container_issue |
12 |
container_start_page |
2100928 |
publishDate |
2021 |
institution |
Swansea University |
issn |
2194-4288 2194-4296 |
doi_str_mv |
10.1002/ente.202100928 |
publisher |
Wiley |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
When designing spacefaring vehicles and orbital instrumentation, the onboard systems such as microelectronics and solar cells require shielding to protect them from degradation brought on by collisions with high‐energy particles. Perovskite solar cells (PSCs) have been shown to be much more radiation stable than Si and GaAs devices, while also providing the ability to be fabricated on flexible substrates. However, even PSCs have their limits, with higher fluences being a cause of degradation. Herein, a novel solution utilizing a screen‐printed, mesoporous carbon electrode to act bi‐functionally as an encapsulate and the electrode is presented. It is demonstrated that the carbon electrode PSCs can withstand proton irradiation up to 1 × 1015 protons cm−2 at 150 KeV with negligible losses (<0.07%) in power conversion efficiency. The 12 μm thick electrode acts as efficient shielding for the perovskite embedded in the mesoporous TiO2. Through Raman and photoluminescence spectroscopy, results suggest that the structural properties of the perovskite and carbon remain intact. Simulations of the device structure show that superior radiation protection comes in conjunction with good device performance. This work highlights the potential of using a carbon electrode for future space electronics which is not limited to only solar cells. |
published_date |
2021-12-03T20:16:00Z |
_version_ |
1821981499001405440 |
score |
11.048042 |