Journal article 1011 views 108 downloads
Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production
Nature Communications, Volume: 12, Issue: 1
Swansea University Authors: Christopher Baker , Michael Charlton, April Cridland , Stefan Eriksson , Aled Isaac , Jack Jones, Niels Madsen , Daniel Maxwell , Patrick Mullan, Dirk van der Werf
-
PDF | Version of Record
© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License
Download (1.69MB)
DOI (Published version): 10.1038/s41467-021-26086-1
Abstract
The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be...
Published in: | Nature Communications |
---|---|
ISSN: | 2041-1723 |
Published: |
Springer Science and Business Media LLC
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa58657 |
first_indexed |
2021-11-15T10:33:45Z |
---|---|
last_indexed |
2023-01-11T14:39:24Z |
id |
cronfa58657 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-28T15:41:37.5482935</datestamp><bib-version>v2</bib-version><id>58657</id><entry>2021-11-15</entry><title>Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production</title><swanseaauthors><author><sid>0c72afb63bd0c6089fc5b60bd096103e</sid><ORCID>0000-0002-9448-8419</ORCID><firstname>Christopher</firstname><surname>Baker</surname><name>Christopher Baker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d9099cdd0f182eb9a1c8fc36ed94f53f</sid><firstname>Michael</firstname><surname>Charlton</surname><name>Michael Charlton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e3c734cfda1e0b3835968762f39525cc</sid><ORCID>0000-0003-4361-0266</ORCID><firstname>April</firstname><surname>Cridland</surname><name>April Cridland</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>785cbd474febb1bfa9c0e14abaf9c4a8</sid><ORCID>0000-0002-5390-1879</ORCID><firstname>Stefan</firstname><surname>Eriksson</surname><name>Stefan Eriksson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>06d7ed42719ef7bb697cf780c63e26f0</sid><ORCID>0000-0002-7813-1903</ORCID><firstname>Aled</firstname><surname>Isaac</surname><name>Aled Isaac</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a1fd0a804e977beb3835bad353db5f72</sid><firstname>Jack</firstname><surname>Jones</surname><name>Jack Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e348e4d768ee19c1d0c68ce3a66d6303</sid><ORCID>0000-0002-7372-0784</ORCID><firstname>Niels</firstname><surname>Madsen</surname><name>Niels Madsen</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e8ebdf12e608884a8d4ea4af35b89b46</sid><ORCID>0000-0001-5178-9492</ORCID><firstname>Daniel</firstname><surname>Maxwell</surname><name>Daniel Maxwell</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d5167e8661859aff63e7984b1a421667</sid><firstname>Patrick</firstname><surname>Mullan</surname><name>Patrick Mullan</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4a4149ebce588e432f310f4ab44dd82a</sid><ORCID>0000-0001-5436-5214</ORCID><firstname>Dirk</firstname><surname>van der Werf</surname><name>Dirk van der Werf</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-11-15</date><deptcode>EAAS</deptcode><abstract>The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. Here, we report on the use of laser cooled Be+ ions to sympathetically cool a large and dense plasma of positrons to directly measured temperatures below 7 K in a Penning trap for antihydrogen synthesis. This will likely herald a significant increase in the amount of antihydrogen available for experimentation, thus facilitating further improvements in studies of fundamental symmetries.</abstract><type>Journal Article</type><journal>Nature Communications</journal><volume>12</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2041-1723</issnElectronic><keywords/><publishedDay>22</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-10-22</publishedDate><doi>10.1038/s41467-021-26086-1</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work was supported by: CNPq, FAPERJ, RENAFAE (Brazil); NSERC, NRC/TRIUMF, EHPDS/EHDRS, FQRNT (Canada); FNU (NICE Centre), Carlsberg Foundation (Denmark); ISF (Israel); STFC, EPSRC (UK); DOE, NSF (USA); and VR (Sweden).</funders><projectreference/><lastEdited>2022-10-28T15:41:37.5482935</lastEdited><Created>2021-11-15T10:33:30.2676239</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Christopher</firstname><surname>Baker</surname><orcid>0000-0002-9448-8419</orcid><order>1</order></author><author><firstname>W.</firstname><surname>Bertsche</surname><order>2</order></author><author><firstname>A.</firstname><surname>Capra</surname><order>3</order></author><author><firstname>C. L.</firstname><surname>Cesar</surname><order>4</order></author><author><firstname>Michael</firstname><surname>Charlton</surname><order>5</order></author><author><firstname>April</firstname><surname>Cridland</surname><orcid>0000-0003-4361-0266</orcid><order>6</order></author><author><firstname>Stefan</firstname><surname>Eriksson</surname><orcid>0000-0002-5390-1879</orcid><order>7</order></author><author><firstname>A.</firstname><surname>Evans</surname><order>8</order></author><author><firstname>N.</firstname><surname>Evetts</surname><order>9</order></author><author><firstname>S.</firstname><surname>Fabbri</surname><order>10</order></author><author><firstname>J.</firstname><surname>Fajans</surname><order>11</order></author><author><firstname>T.</firstname><surname>Friesen</surname><order>12</order></author><author><firstname>M. C.</firstname><surname>Fujiwara</surname><order>13</order></author><author><firstname>P.</firstname><surname>Grandemange</surname><order>14</order></author><author><firstname>P.</firstname><surname>Granum</surname><order>15</order></author><author><firstname>J. S.</firstname><surname>Hangst</surname><order>16</order></author><author><firstname>M. E.</firstname><surname>Hayden</surname><order>17</order></author><author><firstname>D.</firstname><surname>Hodgkinson</surname><order>18</order></author><author><firstname>Aled</firstname><surname>Isaac</surname><orcid>0000-0002-7813-1903</orcid><order>19</order></author><author><firstname>M. A.</firstname><surname>Johnson</surname><order>20</order></author><author><firstname>Jack</firstname><surname>Jones</surname><order>21</order></author><author><firstname>S. A.</firstname><surname>Jones</surname><order>22</order></author><author><firstname>S.</firstname><surname>Jonsell</surname><order>23</order></author><author><firstname>L.</firstname><surname>Kurchaninov</surname><order>24</order></author><author><firstname>Niels</firstname><surname>Madsen</surname><orcid>0000-0002-7372-0784</orcid><order>25</order></author><author><firstname>Daniel</firstname><surname>Maxwell</surname><orcid>0000-0001-5178-9492</orcid><order>26</order></author><author><firstname>J. T. K.</firstname><surname>McKenna</surname><order>27</order></author><author><firstname>S.</firstname><surname>Menary</surname><order>28</order></author><author><firstname>T.</firstname><surname>Momose</surname><order>29</order></author><author><firstname>Patrick</firstname><surname>Mullan</surname><order>30</order></author><author><firstname>K.</firstname><surname>Olchanski</surname><order>31</order></author><author><firstname>A.</firstname><surname>Olin</surname><order>32</order></author><author><firstname>J.</firstname><surname>Peszka</surname><order>33</order></author><author><firstname>A.</firstname><surname>Powell</surname><order>34</order></author><author><firstname>P.</firstname><surname>Pusa</surname><order>35</order></author><author><firstname>C. Ø.</firstname><surname>Rasmussen</surname><order>36</order></author><author><firstname>F.</firstname><surname>Robicheaux</surname><order>37</order></author><author><firstname>R. L.</firstname><surname>Sacramento</surname><order>38</order></author><author><firstname>M.</firstname><surname>Sameed</surname><order>39</order></author><author><firstname>E.</firstname><surname>Sarid</surname><order>40</order></author><author><firstname>D. M.</firstname><surname>Silveira</surname><order>41</order></author><author><firstname>G.</firstname><surname>Stutter</surname><order>42</order></author><author><firstname>C.</firstname><surname>So</surname><order>43</order></author><author><firstname>T. D.</firstname><surname>Tharp</surname><order>44</order></author><author><firstname>R. I.</firstname><surname>Thompson</surname><order>45</order></author><author><firstname>Dirk</firstname><surname>van der Werf</surname><orcid>0000-0001-5436-5214</orcid><order>46</order></author><author><firstname>J. S.</firstname><surname>Wurtele</surname><order>47</order></author></authors><documents><document><filename>58657__21736__e965c6d96c404d3496ed62bdf2362bb4.pdf</filename><originalFilename>58657.pdf</originalFilename><uploaded>2021-11-30T15:33:47.6340050</uploaded><type>Output</type><contentLength>1772464</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-10-28T15:41:37.5482935 v2 58657 2021-11-15 Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production 0c72afb63bd0c6089fc5b60bd096103e 0000-0002-9448-8419 Christopher Baker Christopher Baker true false d9099cdd0f182eb9a1c8fc36ed94f53f Michael Charlton Michael Charlton true false e3c734cfda1e0b3835968762f39525cc 0000-0003-4361-0266 April Cridland April Cridland true false 785cbd474febb1bfa9c0e14abaf9c4a8 0000-0002-5390-1879 Stefan Eriksson Stefan Eriksson true false 06d7ed42719ef7bb697cf780c63e26f0 0000-0002-7813-1903 Aled Isaac Aled Isaac true false a1fd0a804e977beb3835bad353db5f72 Jack Jones Jack Jones true false e348e4d768ee19c1d0c68ce3a66d6303 0000-0002-7372-0784 Niels Madsen Niels Madsen true false e8ebdf12e608884a8d4ea4af35b89b46 0000-0001-5178-9492 Daniel Maxwell Daniel Maxwell true false d5167e8661859aff63e7984b1a421667 Patrick Mullan Patrick Mullan true false 4a4149ebce588e432f310f4ab44dd82a 0000-0001-5436-5214 Dirk van der Werf Dirk van der Werf true false 2021-11-15 EAAS The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. Here, we report on the use of laser cooled Be+ ions to sympathetically cool a large and dense plasma of positrons to directly measured temperatures below 7 K in a Penning trap for antihydrogen synthesis. This will likely herald a significant increase in the amount of antihydrogen available for experimentation, thus facilitating further improvements in studies of fundamental symmetries. Journal Article Nature Communications 12 1 Springer Science and Business Media LLC 2041-1723 22 10 2021 2021-10-22 10.1038/s41467-021-26086-1 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University This work was supported by: CNPq, FAPERJ, RENAFAE (Brazil); NSERC, NRC/TRIUMF, EHPDS/EHDRS, FQRNT (Canada); FNU (NICE Centre), Carlsberg Foundation (Denmark); ISF (Israel); STFC, EPSRC (UK); DOE, NSF (USA); and VR (Sweden). 2022-10-28T15:41:37.5482935 2021-11-15T10:33:30.2676239 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Christopher Baker 0000-0002-9448-8419 1 W. Bertsche 2 A. Capra 3 C. L. Cesar 4 Michael Charlton 5 April Cridland 0000-0003-4361-0266 6 Stefan Eriksson 0000-0002-5390-1879 7 A. Evans 8 N. Evetts 9 S. Fabbri 10 J. Fajans 11 T. Friesen 12 M. C. Fujiwara 13 P. Grandemange 14 P. Granum 15 J. S. Hangst 16 M. E. Hayden 17 D. Hodgkinson 18 Aled Isaac 0000-0002-7813-1903 19 M. A. Johnson 20 Jack Jones 21 S. A. Jones 22 S. Jonsell 23 L. Kurchaninov 24 Niels Madsen 0000-0002-7372-0784 25 Daniel Maxwell 0000-0001-5178-9492 26 J. T. K. McKenna 27 S. Menary 28 T. Momose 29 Patrick Mullan 30 K. Olchanski 31 A. Olin 32 J. Peszka 33 A. Powell 34 P. Pusa 35 C. Ø. Rasmussen 36 F. Robicheaux 37 R. L. Sacramento 38 M. Sameed 39 E. Sarid 40 D. M. Silveira 41 G. Stutter 42 C. So 43 T. D. Tharp 44 R. I. Thompson 45 Dirk van der Werf 0000-0001-5436-5214 46 J. S. Wurtele 47 58657__21736__e965c6d96c404d3496ed62bdf2362bb4.pdf 58657.pdf 2021-11-30T15:33:47.6340050 Output 1772464 application/pdf Version of Record true © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production |
spellingShingle |
Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production Christopher Baker Michael Charlton April Cridland Stefan Eriksson Aled Isaac Jack Jones Niels Madsen Daniel Maxwell Patrick Mullan Dirk van der Werf |
title_short |
Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production |
title_full |
Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production |
title_fullStr |
Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production |
title_full_unstemmed |
Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production |
title_sort |
Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production |
author_id_str_mv |
0c72afb63bd0c6089fc5b60bd096103e d9099cdd0f182eb9a1c8fc36ed94f53f e3c734cfda1e0b3835968762f39525cc 785cbd474febb1bfa9c0e14abaf9c4a8 06d7ed42719ef7bb697cf780c63e26f0 a1fd0a804e977beb3835bad353db5f72 e348e4d768ee19c1d0c68ce3a66d6303 e8ebdf12e608884a8d4ea4af35b89b46 d5167e8661859aff63e7984b1a421667 4a4149ebce588e432f310f4ab44dd82a |
author_id_fullname_str_mv |
0c72afb63bd0c6089fc5b60bd096103e_***_Christopher Baker d9099cdd0f182eb9a1c8fc36ed94f53f_***_Michael Charlton e3c734cfda1e0b3835968762f39525cc_***_April Cridland 785cbd474febb1bfa9c0e14abaf9c4a8_***_Stefan Eriksson 06d7ed42719ef7bb697cf780c63e26f0_***_Aled Isaac a1fd0a804e977beb3835bad353db5f72_***_Jack Jones e348e4d768ee19c1d0c68ce3a66d6303_***_Niels Madsen e8ebdf12e608884a8d4ea4af35b89b46_***_Daniel Maxwell d5167e8661859aff63e7984b1a421667_***_Patrick Mullan 4a4149ebce588e432f310f4ab44dd82a_***_Dirk van der Werf |
author |
Christopher Baker Michael Charlton April Cridland Stefan Eriksson Aled Isaac Jack Jones Niels Madsen Daniel Maxwell Patrick Mullan Dirk van der Werf |
author2 |
Christopher Baker W. Bertsche A. Capra C. L. Cesar Michael Charlton April Cridland Stefan Eriksson A. Evans N. Evetts S. Fabbri J. Fajans T. Friesen M. C. Fujiwara P. Grandemange P. Granum J. S. Hangst M. E. Hayden D. Hodgkinson Aled Isaac M. A. Johnson Jack Jones S. A. Jones S. Jonsell L. Kurchaninov Niels Madsen Daniel Maxwell J. T. K. McKenna S. Menary T. Momose Patrick Mullan K. Olchanski A. Olin J. Peszka A. Powell P. Pusa C. Ø. Rasmussen F. Robicheaux R. L. Sacramento M. Sameed E. Sarid D. M. Silveira G. Stutter C. So T. D. Tharp R. I. Thompson Dirk van der Werf J. S. Wurtele |
format |
Journal article |
container_title |
Nature Communications |
container_volume |
12 |
container_issue |
1 |
publishDate |
2021 |
institution |
Swansea University |
issn |
2041-1723 |
doi_str_mv |
10.1038/s41467-021-26086-1 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
1 |
active_str |
0 |
description |
The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. Here, we report on the use of laser cooled Be+ ions to sympathetically cool a large and dense plasma of positrons to directly measured temperatures below 7 K in a Penning trap for antihydrogen synthesis. This will likely herald a significant increase in the amount of antihydrogen available for experimentation, thus facilitating further improvements in studies of fundamental symmetries. |
published_date |
2021-10-22T08:03:00Z |
_version_ |
1821301204124172288 |
score |
11.047565 |