Journal article 733 views 231 downloads
Deep Time-Series Clustering: A Review
Electronics, Volume: 10, Issue: 23, Start page: 3001
Swansea University Authors: Ali Alqahtani, Mohammed Ali, Xianghua Xie , Mark Jones
-
PDF | Version of Record
© 2021 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
Download (1.77MB)
DOI (Published version): 10.3390/electronics10233001
Abstract
We present a comprehensive, detailed review of time-series data analysis, with emphasis on deep time-series clustering (DTSC), and a case study in the context of movement behavior clustering utilizing the deep clustering method. Specifically, we modified the DCAE architectures to suit time-series da...
Published in: | Electronics |
---|---|
ISSN: | 2079-9292 |
Published: |
MDPI AG
2021
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa58874 |
first_indexed |
2021-12-02T10:12:17Z |
---|---|
last_indexed |
2022-01-01T04:25:16Z |
id |
cronfa58874 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-12-31T13:37:21.5641741</datestamp><bib-version>v2</bib-version><id>58874</id><entry>2021-12-02</entry><title>Deep Time-Series Clustering: A Review</title><swanseaauthors><author><sid>c0c682a8d9d12520f9639b89f9500946</sid><firstname>Ali</firstname><surname>Alqahtani</surname><name>Ali Alqahtani</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>192964f28b9898709d15e1ba9682a2f5</sid><firstname>Mohammed</firstname><surname>Ali</surname><name>Mohammed Ali</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2e1030b6e14fc9debd5d5ae7cc335562</sid><ORCID>0000-0001-8991-1190</ORCID><firstname>Mark</firstname><surname>Jones</surname><name>Mark Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-12-02</date><deptcode>MACS</deptcode><abstract>We present a comprehensive, detailed review of time-series data analysis, with emphasis on deep time-series clustering (DTSC), and a case study in the context of movement behavior clustering utilizing the deep clustering method. Specifically, we modified the DCAE architectures to suit time-series data at the time of our prior deep clustering work. Lately, several works have been carried out on deep clustering of time-series data. We also review these works and identify state-of-the-art, as well as present an outlook on this important field of DTSC from five important perspectives.</abstract><type>Journal Article</type><journal>Electronics</journal><volume>10</volume><journalNumber>23</journalNumber><paginationStart>3001</paginationStart><paginationEnd/><publisher>MDPI AG</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2079-9292</issnElectronic><keywords>deep learning; clustering; time series data</keywords><publishedDay>2</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-12-02</publishedDate><doi>10.3390/electronics10233001</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>Deanship of Scientific Research, King Khalid University of Kingdom of Saudi Arabia under research grant number (RGP1/207/42).</funders><lastEdited>2021-12-31T13:37:21.5641741</lastEdited><Created>2021-12-02T10:09:56.0146654</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Ali</firstname><surname>Alqahtani</surname><order>1</order></author><author><firstname>Mohammed</firstname><surname>Ali</surname><order>2</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>3</order></author><author><firstname>Mark</firstname><surname>Jones</surname><orcid>0000-0001-8991-1190</orcid><order>4</order></author></authors><documents><document><filename>58874__21768__b4934e3d147745f6938d5b6d6ea0b57c.pdf</filename><originalFilename>electronics-10-03001.pdf</originalFilename><uploaded>2021-12-02T10:11:10.0369949</uploaded><type>Output</type><contentLength>1852521</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2021 by the authors. This is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-12-31T13:37:21.5641741 v2 58874 2021-12-02 Deep Time-Series Clustering: A Review c0c682a8d9d12520f9639b89f9500946 Ali Alqahtani Ali Alqahtani true false 192964f28b9898709d15e1ba9682a2f5 Mohammed Ali Mohammed Ali true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2e1030b6e14fc9debd5d5ae7cc335562 0000-0001-8991-1190 Mark Jones Mark Jones true false 2021-12-02 MACS We present a comprehensive, detailed review of time-series data analysis, with emphasis on deep time-series clustering (DTSC), and a case study in the context of movement behavior clustering utilizing the deep clustering method. Specifically, we modified the DCAE architectures to suit time-series data at the time of our prior deep clustering work. Lately, several works have been carried out on deep clustering of time-series data. We also review these works and identify state-of-the-art, as well as present an outlook on this important field of DTSC from five important perspectives. Journal Article Electronics 10 23 3001 MDPI AG 2079-9292 deep learning; clustering; time series data 2 12 2021 2021-12-02 10.3390/electronics10233001 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Another institution paid the OA fee Deanship of Scientific Research, King Khalid University of Kingdom of Saudi Arabia under research grant number (RGP1/207/42). 2021-12-31T13:37:21.5641741 2021-12-02T10:09:56.0146654 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Ali Alqahtani 1 Mohammed Ali 2 Xianghua Xie 0000-0002-2701-8660 3 Mark Jones 0000-0001-8991-1190 4 58874__21768__b4934e3d147745f6938d5b6d6ea0b57c.pdf electronics-10-03001.pdf 2021-12-02T10:11:10.0369949 Output 1852521 application/pdf Version of Record true © 2021 by the authors. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license true eng https://creativecommons.org/licenses/by/4.0/ |
title |
Deep Time-Series Clustering: A Review |
spellingShingle |
Deep Time-Series Clustering: A Review Ali Alqahtani Mohammed Ali Xianghua Xie Mark Jones |
title_short |
Deep Time-Series Clustering: A Review |
title_full |
Deep Time-Series Clustering: A Review |
title_fullStr |
Deep Time-Series Clustering: A Review |
title_full_unstemmed |
Deep Time-Series Clustering: A Review |
title_sort |
Deep Time-Series Clustering: A Review |
author_id_str_mv |
c0c682a8d9d12520f9639b89f9500946 192964f28b9898709d15e1ba9682a2f5 b334d40963c7a2f435f06d2c26c74e11 2e1030b6e14fc9debd5d5ae7cc335562 |
author_id_fullname_str_mv |
c0c682a8d9d12520f9639b89f9500946_***_Ali Alqahtani 192964f28b9898709d15e1ba9682a2f5_***_Mohammed Ali b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie 2e1030b6e14fc9debd5d5ae7cc335562_***_Mark Jones |
author |
Ali Alqahtani Mohammed Ali Xianghua Xie Mark Jones |
author2 |
Ali Alqahtani Mohammed Ali Xianghua Xie Mark Jones |
format |
Journal article |
container_title |
Electronics |
container_volume |
10 |
container_issue |
23 |
container_start_page |
3001 |
publishDate |
2021 |
institution |
Swansea University |
issn |
2079-9292 |
doi_str_mv |
10.3390/electronics10233001 |
publisher |
MDPI AG |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
We present a comprehensive, detailed review of time-series data analysis, with emphasis on deep time-series clustering (DTSC), and a case study in the context of movement behavior clustering utilizing the deep clustering method. Specifically, we modified the DCAE architectures to suit time-series data at the time of our prior deep clustering work. Lately, several works have been carried out on deep clustering of time-series data. We also review these works and identify state-of-the-art, as well as present an outlook on this important field of DTSC from five important perspectives. |
published_date |
2021-12-02T14:10:43Z |
_version_ |
1822411502427045888 |
score |
11.053652 |