No Cover Image

Journal article 341 views 73 downloads

Aeroacoustic Attenuation Performance of a Helmholtz Resonator with a Rigid Baffle Implemented in the Presence of a Grazing Flow

Di Guan Orcid Logo, Dan Zhao Orcid Logo, Zhaoxin Ren Orcid Logo

International Journal of Aerospace Engineering, Volume: 2020, Pages: 1 - 16

Swansea University Author: Zhaoxin Ren Orcid Logo

  • 59349.pdf

    PDF | Version of Record

    Copyright © 2020 Di Guan et al. This is an open access article distributed under the Creative Commons Attribution License

    Download (4MB)

Check full text

DOI (Published version): 10.1155/2020/1916239

Abstract

To broaden its’ effective frequency range and to improve its transmission loss performance, a modified design of a Helmholtz resonator is proposed and evaluated by implementing a rigid baffle in its cavity. Comparison is then made between the proposed design and the conventional one by considering a...

Full description

Published in: International Journal of Aerospace Engineering
ISSN: 1687-5966 1687-5974
Published: Hindawi Limited 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59349
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: To broaden its’ effective frequency range and to improve its transmission loss performance, a modified design of a Helmholtz resonator is proposed and evaluated by implementing a rigid baffle in its cavity. Comparison is then made between the proposed design and the conventional one by considering a rectangular duct with the resonator implemented in the presence of a mean grazing flow. For this, a linearized 2D Navier-Stokes model in frequency domain is developed. After validated by benchmarking with the available experimental data and our experimental measurements, the model is used to evaluate the effects of (1) the width Lp of the rigid baffle, (2) its implementation location/height Hg, (3) its implementation configurations (i.e., attached to the left sidewall or right sidewall), (4) the grazing mean flow Mu (Mach number), and (5) the neck shape on a noise damping effect. It is shown that as the rigid baffle is attached in the 2 different configurations, the resonant frequencies and the maximum transmission losses cannot be predicted by using the classical theoretical formulation ω2 = c2S/VLeff , especially as the grazing Mach number Mu is greater than 0.07, i.e., Mu > 0:07. In addition, there is an optimum grazing flow Mach number corresponding to the maximum transmission loss peak, as the width Lp is less than half of the cavity width Dr, i.e., Lp/Dr ≤ 0:5. As the rigid plate width is increased to Lp/Dr = 0:75, one additional transmission loss peak at approximately 400 Hz is produced. The generation of the 12 dB transmission loss peak at 400 Hz is shown to attribute to the sound andstructure interaction. Finally, varying the neck shape from the conventional one to an arc one leads to the dominant resonant frequency being increased by approximately 20% and so the secondary transmission loss peak by 2-5 dB. The present work proposes and systematically studies an improved design of a Helmholtz resonator with an additional transmission loss peak at a high frequency, besides the dominant peak at a low frequency.
College: Faculty of Science and Engineering
Funders: This work is financially supported by the Singapore National Research Foundation (Prime Minister Office), NRF2016NRF-NSFC001-102, and the University of Canterbury, New Zealand, with grant No. 452STUPDZ.
Start Page: 1
End Page: 16