Journal article 957 views 87 downloads
Investigating the uptake, effectiveness and safety of COVID-19 vaccines: protocol for an observational study using linked UK national data
BMJ Open, Volume: 12, Issue: 2, Start page: e050062.
Swansea University Authors: David Ford , Chris Orton , Ashley Akbari , Stuart Bedston, Gareth Davies , Lucy Griffiths , Rowena Griffiths, Emily Lowthian , Jane Lyons, Ronan Lyons , Laura North, Fatemeh Torabi
-
PDF | Version of Record
© Author(s) (or theiremployer(s)) 2022. Re-use permitted under CC BY.
Download (810.41KB)
DOI (Published version): 10.1136/bmjopen-2021-050062
Abstract
Introduction The novel coronavirus SARS-CoV-2, which emerged in December 2019, has caused millions of deaths and severe illness worldwide. Numerous vaccines are currently under development of which a few have now been authorised for population-level administration by several countries. As of 20 Sept...
Published in: | BMJ Open |
---|---|
ISSN: | 2044-6055 2044-6055 |
Published: |
BMJ
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa59406 |
Abstract: |
Introduction The novel coronavirus SARS-CoV-2, which emerged in December 2019, has caused millions of deaths and severe illness worldwide. Numerous vaccines are currently under development of which a few have now been authorised for population-level administration by several countries. As of 20 September 2021, over 48 million people have received their first vaccine dose and over 44 million people have received their second vaccine dose across the UK. We aim to assess the uptake rates, effectiveness, and safety of all currently approved COVID-19 vaccines in the UK.Methods and analysis We will use prospective cohort study designs to assess vaccine uptake, effectiveness and safety against clinical outcomes and deaths. Test-negative case–control study design will be used to assess vaccine effectiveness (VE) against laboratory confirmed SARS-CoV-2 infection. Self-controlled case series and retrospective cohort study designs will be carried out to assess vaccine safety against mild-to-moderate and severe adverse events, respectively. Individual-level pseudonymised data from primary care, secondary care, laboratory test and death records will be linked and analysed in secure research environments in each UK nation. Univariate and multivariate logistic regression models will be carried out to estimate vaccine uptake levels in relation to various population characteristics. VE estimates against laboratory confirmed SARS-CoV-2 infection will be generated using a generalised additive logistic model. Time-dependent Cox models will be used to estimate the VE against clinical outcomes and deaths. The safety of the vaccines will be assessed using logistic regression models with an offset for the length of the risk period. Where possible, data will be meta-analysed across the UK nations.Ethics and dissemination We obtained approvals from the National Research Ethics Service Committee, Southeast Scotland 02 (12/SS/0201), the Secure Anonymised Information Linkage independent Information Governance Review Panel project number 0911. Concerning English data, University of Oxford is compliant with the General Data Protection Regulation and the National Health Service (NHS) Digital Data Security and Protection Policy. This is an approved study (Integrated Research Application ID 301740, Health Research Authority (HRA) Research Ethics Committee 21/HRA/2786). The Oxford-Royal College of General Practitioners Clinical Informatics Digital Hub meets NHS Digital’s Data Security and Protection Toolkit requirements. In Northern Ireland, the project was approved by the Honest Broker Governance Board, project number 0064. Findings will be made available to national policy-makers, presented at conferences and published in peer-reviewed journals. |
---|---|
College: |
Faculty of Medicine, Health and Life Sciences |
Funders: |
This research is part of the Data and Connectivity National Core Study, led by Health Data Research UK in partnership with the Office for National Statistics and funded by UK Research and Innovation (HDRUK2020.146). EAVE II is funded by the Medical Research Council (MC_PC_19075) and supported by the Scottish Government. This work is supported by BREATHE - The Health Data Research Hub for Respiratory Health (MC_PC_19004). BREATHE is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. ConCOV is supported by the Medical Research Council (MR/V028367/1); Health Data Research UK (HDR-9006) which receives its funding from the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health
and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation (BHF) and the Wellcome Trust; and Administrative Data Research UK which is funded by the Economic and Social Research Council (grant ES/S007393/1). |
Issue: |
2 |
Start Page: |
e050062. |