No Cover Image

Journal article 785 views 195 downloads

Convergence in Wasserstein distance for empirical measures of semilinear SPDEs

Feng-yu Wang

The Annals of Applied Probability, Volume: 33, Issue: 1

Swansea University Author: Feng-yu Wang

Check full text

DOI (Published version): 10.1214/22-aap1807

Abstract

The convergence rate in Wasserstein distance is estimated for the empirical measures of symmetric semilinear SPDEs. Unlike in the finite-dimensional case that the convergence is of algebraic order in time, in the present situation the convergence is of log order with a power given by eigenvalues of...

Full description

Published in: The Annals of Applied Probability
ISSN: 1050-5164
Published: Institute of Mathematical Statistics 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59501
first_indexed 2022-03-21T12:57:57Z
last_indexed 2024-11-14T12:15:37Z
id cronfa59501
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2023-06-01T12:20:47.6603691</datestamp><bib-version>v2</bib-version><id>59501</id><entry>2022-03-05</entry><title>Convergence in Wasserstein distance for empirical measures of semilinear SPDEs</title><swanseaauthors><author><sid>6734caa6d9a388bd3bd8eb0a1131d0de</sid><firstname>Feng-yu</firstname><surname>Wang</surname><name>Feng-yu Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-03-05</date><abstract>The convergence rate in Wasserstein distance is estimated for the empirical measures of symmetric semilinear SPDEs. Unlike in the finite-dimensional case that the convergence is of algebraic order in time, in the present situation the convergence is of log order with a power given by eigenvalues of the underlying linear operator.</abstract><type>Journal Article</type><journal>The Annals of Applied Probability</journal><volume>33</volume><journalNumber>1</journalNumber><paginationStart/><paginationEnd/><publisher>Institute of Mathematical Statistics</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1050-5164</issnPrint><issnElectronic/><keywords/><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-02-01</publishedDate><doi>10.1214/22-aap1807</doi><url>http://dx.doi.org/10.1214/22-aap1807</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-06-01T12:20:47.6603691</lastEdited><Created>2022-03-05T03:23:52.1180203</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Feng-yu</firstname><surname>Wang</surname><order>1</order></author></authors><documents><document><filename>59501__22528__f8aea41a78954d3c9dbfde3e78e50580.pdf</filename><originalFilename>Wang.pdf</originalFilename><uploaded>2022-03-05T03:26:46.2374485</uploaded><type>Output</type><contentLength>285988</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2023-06-01T12:20:47.6603691 v2 59501 2022-03-05 Convergence in Wasserstein distance for empirical measures of semilinear SPDEs 6734caa6d9a388bd3bd8eb0a1131d0de Feng-yu Wang Feng-yu Wang true false 2022-03-05 The convergence rate in Wasserstein distance is estimated for the empirical measures of symmetric semilinear SPDEs. Unlike in the finite-dimensional case that the convergence is of algebraic order in time, in the present situation the convergence is of log order with a power given by eigenvalues of the underlying linear operator. Journal Article The Annals of Applied Probability 33 1 Institute of Mathematical Statistics 1050-5164 1 2 2023 2023-02-01 10.1214/22-aap1807 http://dx.doi.org/10.1214/22-aap1807 COLLEGE NANME COLLEGE CODE Swansea University 2023-06-01T12:20:47.6603691 2022-03-05T03:23:52.1180203 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Feng-yu Wang 1 59501__22528__f8aea41a78954d3c9dbfde3e78e50580.pdf Wang.pdf 2022-03-05T03:26:46.2374485 Output 285988 application/pdf Accepted Manuscript true true eng
title Convergence in Wasserstein distance for empirical measures of semilinear SPDEs
spellingShingle Convergence in Wasserstein distance for empirical measures of semilinear SPDEs
Feng-yu Wang
title_short Convergence in Wasserstein distance for empirical measures of semilinear SPDEs
title_full Convergence in Wasserstein distance for empirical measures of semilinear SPDEs
title_fullStr Convergence in Wasserstein distance for empirical measures of semilinear SPDEs
title_full_unstemmed Convergence in Wasserstein distance for empirical measures of semilinear SPDEs
title_sort Convergence in Wasserstein distance for empirical measures of semilinear SPDEs
author_id_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de
author_id_fullname_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de_***_Feng-yu Wang
author Feng-yu Wang
author2 Feng-yu Wang
format Journal article
container_title The Annals of Applied Probability
container_volume 33
container_issue 1
publishDate 2023
institution Swansea University
issn 1050-5164
doi_str_mv 10.1214/22-aap1807
publisher Institute of Mathematical Statistics
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
url http://dx.doi.org/10.1214/22-aap1807
document_store_str 1
active_str 0
description The convergence rate in Wasserstein distance is estimated for the empirical measures of symmetric semilinear SPDEs. Unlike in the finite-dimensional case that the convergence is of algebraic order in time, in the present situation the convergence is of log order with a power given by eigenvalues of the underlying linear operator.
published_date 2023-02-01T20:18:53Z
_version_ 1821981680078946304
score 11.048042