No Cover Image

Journal article 296 views 37 downloads

Robust Magnetic γ-Fe2O3/Al–ZnO Adsorbent for Chlorpyriphos Removal in Water

Miryam Boulares, Baha Chamam, Amal Mejri, Mohamed Ali Wahab, Amani Haddouk, Lassaad El Mir, Ahmed Hichem Hamzaoui, Amjad Kallel Orcid Logo, Chedly Tizaoui Orcid Logo, Ismail Trabelsi

Water, Volume: 14, Issue: 7, Start page: 1160

Swansea University Author: Chedly Tizaoui Orcid Logo

  • 59778.pdf

    PDF | Version of Record

    © 2022 by the authors.This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license

    Download (3.97MB)

Check full text

DOI (Published version): 10.3390/w14071160

Abstract

In this research, the removal of the pesticide chlorpyriphos (CPE) from water by adsorption using a novel adsorbent made of γ-Fe2O3/Al-ZnO nanocomposite was studied. The adsorbent was characterized using Fourier-transformed infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Brunauer-E...

Full description

Published in: Water
ISSN: 2073-4441
Published: MDPI AG 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59778
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: In this research, the removal of the pesticide chlorpyriphos (CPE) from water by adsorption using a novel adsorbent made of γ-Fe2O3/Al-ZnO nanocomposite was studied. The adsorbent was characterized using Fourier-transformed infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area, and vibrating sample magnetometry (VSM). The main parameters affecting the adsorption process, including the initial pH (2–12), the concentration of pesticide (10–70 ppm), the %Fe2O3 of the adsorbent, and the adsorption time (≤60 min), were studied. The results demonstrated that the adsorption of CPE depended on the pH, with a maximum removal of 92.3% achieved at around neutral pH. The adsorption isotherm was modelled and the results showed that the Freundlich model fitted the experimental data better than the Langmuir and Temkin models. The kinetics of adsorption were also studied and modelled using the pseudo-first-order and pseudo-second-order models, with the former being found more suitable. Energy dispersive X-ray (EDX) analysis confirmed the adsorption of CPE on γ-Fe2O3/Al-ZnO, while FTIR analysis suggested that the hydroxyl, N-pyridine, and chloro functional groups governed the adsorption mechanism. Furthermore, VSM analysis revealed that the magnetization saturation of γ-Fe2O3/Al-ZnO nanocomposite, after CPE adsorption, was slightly lower than that of fresh γ-Fe2O3/Al-ZnO but remained adequate for the efficient separation of the adsorbent simply using a magnet. This study demonstrates that binary γ-Fe2O3/Al-ZnO magnetic nanocomposites are effective for the removal of chlorpyriphos and could be highly promising materials for the removal of emerging pollutants in wastewater.
Keywords: nanocomposites; magnetic adsorption; chlorpyriphos; pesticides; isotherm and kinetic
College: Faculty of Science and Engineering
Issue: 7
Start Page: 1160