Conference Paper/Proceeding/Abstract 655 views 69 downloads
Interpreting machine learning functions as physical observables
Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021), Volume: 396
Swansea University Authors: Gert Aarts , Dimitrios Bachtis, Biagio Lucini
-
PDF | Version of Record
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
Download (931.23KB)
DOI (Published version): 10.22323/1.396.0248
Abstract
We propose to interpret machine learning functions as physical observables, opening up the possibility to apply “standard” statistical-mechanical methods to outputs from neural networks. This includes histogram reweighting and finite-size scaling, to analyse phase transitions quantitatively. In addi...
Published in: | Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021) |
---|---|
ISSN: | 1824-8039 |
Published: |
Trieste, Italy
Sissa Medialab
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60430 |
first_indexed |
2022-07-08T19:39:18Z |
---|---|
last_indexed |
2023-01-13T19:20:33Z |
id |
cronfa60430 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-07-11T14:47:56.6363101</datestamp><bib-version>v2</bib-version><id>60430</id><entry>2022-07-08</entry><title>Interpreting machine learning functions as physical observables</title><swanseaauthors><author><sid>1ba0dad382dfe18348ec32fc65f3f3de</sid><ORCID>0000-0002-6038-3782</ORCID><firstname>Gert</firstname><surname>Aarts</surname><name>Gert Aarts</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>91a311a58d3f8badc779f0ffa6d0ca3d</sid><firstname>Dimitrios</firstname><surname>Bachtis</surname><name>Dimitrios Bachtis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e6fcfe060e07a351090e2a8aba363cf</sid><ORCID>0000-0001-8974-8266</ORCID><firstname>Biagio</firstname><surname>Lucini</surname><name>Biagio Lucini</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-07-08</date><deptcode>BGPS</deptcode><abstract>We propose to interpret machine learning functions as physical observables, opening up the possibility to apply “standard” statistical-mechanical methods to outputs from neural networks. This includes histogram reweighting and finite-size scaling, to analyse phase transitions quantitatively. In addition we incorporate predictive functions as conjugate variables coupled to an external field within the Hamiltonian of a system, allowing to induce order-disorder phase transitions in a novel manner. A noteworthy feature of this approach is that no knowledge of the symmetries in the Hamiltonian is required.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021)</journal><volume>396</volume><journalNumber/><paginationStart/><paginationEnd/><publisher>Sissa Medialab</publisher><placeOfPublication>Trieste, Italy</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1824-8039</issnElectronic><keywords/><publishedDay>8</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-07-08</publishedDate><doi>10.22323/1.396.0248</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>ERC, STFC. Leverhulme Foundation, Royal Society, ERDF</funders><projectreference>813942, WM170010 , RF-2020-461\9, ST/T000813/1</projectreference><lastEdited>2022-07-11T14:47:56.6363101</lastEdited><Created>2022-07-08T20:18:27.9284067</Created><path><level id="1">College of Science</level><level id="2">College of Science</level></path><authors><author><firstname>Gert</firstname><surname>Aarts</surname><orcid>0000-0002-6038-3782</orcid><order>1</order></author><author><firstname>Dimitrios</firstname><surname>Bachtis</surname><order>2</order></author><author><firstname>Biagio</firstname><surname>Lucini</surname><orcid>0000-0001-8974-8266</orcid><order>3</order></author></authors><documents><document><filename>60430__24521__93aada50fb404b3fa03a3c2b494d3266.pdf</filename><originalFilename>LATTICE2021_248.pdf</originalFilename><uploaded>2022-07-08T20:38:39.9898009</uploaded><type>Output</type><contentLength>953582</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-07-11T14:47:56.6363101 v2 60430 2022-07-08 Interpreting machine learning functions as physical observables 1ba0dad382dfe18348ec32fc65f3f3de 0000-0002-6038-3782 Gert Aarts Gert Aarts true false 91a311a58d3f8badc779f0ffa6d0ca3d Dimitrios Bachtis Dimitrios Bachtis true false 7e6fcfe060e07a351090e2a8aba363cf 0000-0001-8974-8266 Biagio Lucini Biagio Lucini true false 2022-07-08 BGPS We propose to interpret machine learning functions as physical observables, opening up the possibility to apply “standard” statistical-mechanical methods to outputs from neural networks. This includes histogram reweighting and finite-size scaling, to analyse phase transitions quantitatively. In addition we incorporate predictive functions as conjugate variables coupled to an external field within the Hamiltonian of a system, allowing to induce order-disorder phase transitions in a novel manner. A noteworthy feature of this approach is that no knowledge of the symmetries in the Hamiltonian is required. Conference Paper/Proceeding/Abstract Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021) 396 Sissa Medialab Trieste, Italy 1824-8039 8 7 2022 2022-07-08 10.22323/1.396.0248 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University Another institution paid the OA fee ERC, STFC. Leverhulme Foundation, Royal Society, ERDF 813942, WM170010 , RF-2020-461\9, ST/T000813/1 2022-07-11T14:47:56.6363101 2022-07-08T20:18:27.9284067 College of Science College of Science Gert Aarts 0000-0002-6038-3782 1 Dimitrios Bachtis 2 Biagio Lucini 0000-0001-8974-8266 3 60430__24521__93aada50fb404b3fa03a3c2b494d3266.pdf LATTICE2021_248.pdf 2022-07-08T20:38:39.9898009 Output 953582 application/pdf Version of Record true © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
Interpreting machine learning functions as physical observables |
spellingShingle |
Interpreting machine learning functions as physical observables Gert Aarts Dimitrios Bachtis Biagio Lucini |
title_short |
Interpreting machine learning functions as physical observables |
title_full |
Interpreting machine learning functions as physical observables |
title_fullStr |
Interpreting machine learning functions as physical observables |
title_full_unstemmed |
Interpreting machine learning functions as physical observables |
title_sort |
Interpreting machine learning functions as physical observables |
author_id_str_mv |
1ba0dad382dfe18348ec32fc65f3f3de 91a311a58d3f8badc779f0ffa6d0ca3d 7e6fcfe060e07a351090e2a8aba363cf |
author_id_fullname_str_mv |
1ba0dad382dfe18348ec32fc65f3f3de_***_Gert Aarts 91a311a58d3f8badc779f0ffa6d0ca3d_***_Dimitrios Bachtis 7e6fcfe060e07a351090e2a8aba363cf_***_Biagio Lucini |
author |
Gert Aarts Dimitrios Bachtis Biagio Lucini |
author2 |
Gert Aarts Dimitrios Bachtis Biagio Lucini |
format |
Conference Paper/Proceeding/Abstract |
container_title |
Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021) |
container_volume |
396 |
publishDate |
2022 |
institution |
Swansea University |
issn |
1824-8039 |
doi_str_mv |
10.22323/1.396.0248 |
publisher |
Sissa Medialab |
college_str |
College of Science |
hierarchytype |
|
hierarchy_top_id |
collegeofscience |
hierarchy_top_title |
College of Science |
hierarchy_parent_id |
collegeofscience |
hierarchy_parent_title |
College of Science |
department_str |
College of Science{{{_:::_}}}College of Science{{{_:::_}}}College of Science |
document_store_str |
1 |
active_str |
0 |
description |
We propose to interpret machine learning functions as physical observables, opening up the possibility to apply “standard” statistical-mechanical methods to outputs from neural networks. This includes histogram reweighting and finite-size scaling, to analyse phase transitions quantitatively. In addition we incorporate predictive functions as conjugate variables coupled to an external field within the Hamiltonian of a system, allowing to induce order-disorder phase transitions in a novel manner. A noteworthy feature of this approach is that no knowledge of the symmetries in the Hamiltonian is required. |
published_date |
2022-07-08T14:15:34Z |
_version_ |
1821958821948424192 |
score |
11.048149 |