No Cover Image

Journal article 460 views 43 downloads

Forecasting the crowd: An effective and efficient neural network for citywide crowd information prediction at a fine spatio-temporal scale

Xucai Zhang, Yeran Sun Orcid Logo, Fangli Guan, Kai Chen, Frank Witlox, Haosheng Huang

Transportation Research Part C: Emerging Technologies, Volume: 143, Start page: 103854

Swansea University Author: Yeran Sun Orcid Logo

  • 60967.pdf

    PDF | Accepted Manuscript

    ©2022 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)

    Download (1.75MB)
Published in: Transportation Research Part C: Emerging Technologies
ISSN: 0968-090X
Published: Elsevier BV 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa60967
first_indexed 2022-09-21T11:40:11Z
last_indexed 2024-11-14T12:18:19Z
id cronfa60967
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2024-07-17T08:58:21.2982937</datestamp><bib-version>v2</bib-version><id>60967</id><entry>2022-08-30</entry><title>Forecasting the crowd: An effective and efficient neural network for citywide crowd information prediction at a fine spatio-temporal scale</title><swanseaauthors><author><sid>10382520ce790248e1be61a6a9003717</sid><ORCID>0000-0002-6847-614X</ORCID><firstname>Yeran</firstname><surname>Sun</surname><name>Yeran Sun</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-08-30</date><deptcode>BGPS</deptcode><abstract/><type>Journal Article</type><journal>Transportation Research Part C: Emerging Technologies</journal><volume>143</volume><journalNumber/><paginationStart>103854</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0968-090X</issnPrint><issnElectronic/><keywords>Crowd Information, Convolutional Neural Network; k-Nearest Neighbor; Gated Recurrent Unit; Training Time Cost</keywords><publishedDay>1</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-10-01</publishedDate><doi>10.1016/j.trc.2022.103854</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>Xucai Zhang and Fangli Guan are supported by CSC (China Scholarship Council) [202106380062, 202006270082].</funders><projectreference/><lastEdited>2024-07-17T08:58:21.2982937</lastEdited><Created>2022-08-30T11:17:44.2067558</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Geography</level></path><authors><author><firstname>Xucai</firstname><surname>Zhang</surname><order>1</order></author><author><firstname>Yeran</firstname><surname>Sun</surname><orcid>0000-0002-6847-614X</orcid><order>2</order></author><author><firstname>Fangli</firstname><surname>Guan</surname><order>3</order></author><author><firstname>Kai</firstname><surname>Chen</surname><order>4</order></author><author><firstname>Frank</firstname><surname>Witlox</surname><order>5</order></author><author><firstname>Haosheng</firstname><surname>Huang</surname><order>6</order></author></authors><documents><document><filename>60967__25219__2555873e00964fd187bcc950572dc19a.pdf</filename><originalFilename>60967.pdf</originalFilename><uploaded>2022-09-26T09:58:15.9145156</uploaded><type>Output</type><contentLength>1836112</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2023-08-16T00:00:00.0000000</embargoDate><documentNotes>&#xA9;2022 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2024-07-17T08:58:21.2982937 v2 60967 2022-08-30 Forecasting the crowd: An effective and efficient neural network for citywide crowd information prediction at a fine spatio-temporal scale 10382520ce790248e1be61a6a9003717 0000-0002-6847-614X Yeran Sun Yeran Sun true false 2022-08-30 BGPS Journal Article Transportation Research Part C: Emerging Technologies 143 103854 Elsevier BV 0968-090X Crowd Information, Convolutional Neural Network; k-Nearest Neighbor; Gated Recurrent Unit; Training Time Cost 1 10 2022 2022-10-01 10.1016/j.trc.2022.103854 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University Xucai Zhang and Fangli Guan are supported by CSC (China Scholarship Council) [202106380062, 202006270082]. 2024-07-17T08:58:21.2982937 2022-08-30T11:17:44.2067558 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Geography Xucai Zhang 1 Yeran Sun 0000-0002-6847-614X 2 Fangli Guan 3 Kai Chen 4 Frank Witlox 5 Haosheng Huang 6 60967__25219__2555873e00964fd187bcc950572dc19a.pdf 60967.pdf 2022-09-26T09:58:15.9145156 Output 1836112 application/pdf Accepted Manuscript true 2023-08-16T00:00:00.0000000 ©2022 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/
title Forecasting the crowd: An effective and efficient neural network for citywide crowd information prediction at a fine spatio-temporal scale
spellingShingle Forecasting the crowd: An effective and efficient neural network for citywide crowd information prediction at a fine spatio-temporal scale
Yeran Sun
title_short Forecasting the crowd: An effective and efficient neural network for citywide crowd information prediction at a fine spatio-temporal scale
title_full Forecasting the crowd: An effective and efficient neural network for citywide crowd information prediction at a fine spatio-temporal scale
title_fullStr Forecasting the crowd: An effective and efficient neural network for citywide crowd information prediction at a fine spatio-temporal scale
title_full_unstemmed Forecasting the crowd: An effective and efficient neural network for citywide crowd information prediction at a fine spatio-temporal scale
title_sort Forecasting the crowd: An effective and efficient neural network for citywide crowd information prediction at a fine spatio-temporal scale
author_id_str_mv 10382520ce790248e1be61a6a9003717
author_id_fullname_str_mv 10382520ce790248e1be61a6a9003717_***_Yeran Sun
author Yeran Sun
author2 Xucai Zhang
Yeran Sun
Fangli Guan
Kai Chen
Frank Witlox
Haosheng Huang
format Journal article
container_title Transportation Research Part C: Emerging Technologies
container_volume 143
container_start_page 103854
publishDate 2022
institution Swansea University
issn 0968-090X
doi_str_mv 10.1016/j.trc.2022.103854
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Geography{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Geography
document_store_str 1
active_str 0
published_date 2022-10-01T14:17:47Z
_version_ 1821324783551250432
score 11.047891