Conference Paper/Proceeding/Abstract 715 views 54 downloads
Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set
LIPIcs, MFCS 2022, Volume: 241
Swansea University Author:
Eike Neumann
-
PDF | Version of Record
© Julian D’Costa, Engel Lefaucheux, Eike Neumann, Joël Ouaknine, and James Worrell; licensed under Creative Commons License CC-BY 4.0
Download (703.69KB)
DOI (Published version): 10.4230/LIPIcs.MFCS.2022.39
Abstract
We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is doubly e...
Published in: | LIPIcs, MFCS 2022 |
---|---|
ISBN: | 978-395977256-3 |
ISSN: | 1868-8969 |
Published: |
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,Germany
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa61278 |
first_indexed |
2022-09-20T07:31:35Z |
---|---|
last_indexed |
2023-01-13T19:21:57Z |
id |
cronfa61278 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-11T15:56:05.6005032</datestamp><bib-version>v2</bib-version><id>61278</id><entry>2022-09-20</entry><title>Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set</title><swanseaauthors><author><sid>1bf535eaa8d6fcdfbd464a511c1c0c78</sid><ORCID>0009-0003-2907-1566</ORCID><firstname>Eike</firstname><surname>Neumann</surname><name>Eike Neumann</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-09-20</date><deptcode>MACS</deptcode><abstract>We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is doubly exponential in the ambient dimension, singly exponential in the degrees of the polynomials used to define the semialgebraic set, and singly exponential in the bitsize of the coefficients of these polynomials and the bitsize of the matrix entries. We show that our bound is tight by providing a matching lower bound.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>LIPIcs, MFCS 2022</journal><volume>241</volume><journalNumber/><paginationStart/><paginationEnd/><publisher>Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,Germany</publisher><placeOfPublication/><isbnPrint>978-395977256-3</isbnPrint><isbnElectronic/><issnPrint>1868-8969</issnPrint><issnElectronic/><keywords/><publishedDay>2</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-08-02</publishedDate><doi>10.4230/LIPIcs.MFCS.2022.39</doi><url>https://drops.dagstuhl.de/opus/volltexte/2022/16797/</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>Julian D’Costa: emmy.network foundation under the aegis of the Fondation de Luxembourg.
Joël Ouaknine: Also affiliated with Keble College, Oxford as emmy.network Fellow, and supported
by DFG grant 389792660 as part of TRR 248 (see https://perspicuous-computing.science).</funders><projectreference/><lastEdited>2022-10-11T15:56:05.6005032</lastEdited><Created>2022-09-20T08:26:14.2131701</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Julian</firstname><surname>D'Costa</surname><order>1</order></author><author><firstname>Lefaucheux</firstname><surname>Engel</surname><order>2</order></author><author><firstname>Eike</firstname><surname>Neumann</surname><orcid>0009-0003-2907-1566</orcid><order>3</order></author><author><firstname>Joel</firstname><surname>Ouaknine</surname><order>4</order></author><author><firstname>James</firstname><surname>Worrell</surname><order>5</order></author></authors><documents><document><filename>61278__25156__fb3afc3fb7974ca7bbea53103fcaf98e.pdf</filename><originalFilename>61278.pdf</originalFilename><uploaded>2022-09-20T08:30:57.1930051</uploaded><type>Output</type><contentLength>720578</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© Julian D’Costa, Engel Lefaucheux, Eike Neumann, Joël Ouaknine, and James Worrell;
licensed under Creative Commons License CC-BY 4.0</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-10-11T15:56:05.6005032 v2 61278 2022-09-20 Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set 1bf535eaa8d6fcdfbd464a511c1c0c78 0009-0003-2907-1566 Eike Neumann Eike Neumann true false 2022-09-20 MACS We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is doubly exponential in the ambient dimension, singly exponential in the degrees of the polynomials used to define the semialgebraic set, and singly exponential in the bitsize of the coefficients of these polynomials and the bitsize of the matrix entries. We show that our bound is tight by providing a matching lower bound. Conference Paper/Proceeding/Abstract LIPIcs, MFCS 2022 241 Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,Germany 978-395977256-3 1868-8969 2 8 2022 2022-08-02 10.4230/LIPIcs.MFCS.2022.39 https://drops.dagstuhl.de/opus/volltexte/2022/16797/ COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Julian D’Costa: emmy.network foundation under the aegis of the Fondation de Luxembourg. Joël Ouaknine: Also affiliated with Keble College, Oxford as emmy.network Fellow, and supported by DFG grant 389792660 as part of TRR 248 (see https://perspicuous-computing.science). 2022-10-11T15:56:05.6005032 2022-09-20T08:26:14.2131701 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Julian D'Costa 1 Lefaucheux Engel 2 Eike Neumann 0009-0003-2907-1566 3 Joel Ouaknine 4 James Worrell 5 61278__25156__fb3afc3fb7974ca7bbea53103fcaf98e.pdf 61278.pdf 2022-09-20T08:30:57.1930051 Output 720578 application/pdf Version of Record true © Julian D’Costa, Engel Lefaucheux, Eike Neumann, Joël Ouaknine, and James Worrell; licensed under Creative Commons License CC-BY 4.0 true eng https://creativecommons.org/licenses/by/4.0/ |
title |
Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set |
spellingShingle |
Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set Eike Neumann |
title_short |
Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set |
title_full |
Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set |
title_fullStr |
Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set |
title_full_unstemmed |
Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set |
title_sort |
Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set |
author_id_str_mv |
1bf535eaa8d6fcdfbd464a511c1c0c78 |
author_id_fullname_str_mv |
1bf535eaa8d6fcdfbd464a511c1c0c78_***_Eike Neumann |
author |
Eike Neumann |
author2 |
Julian D'Costa Lefaucheux Engel Eike Neumann Joel Ouaknine James Worrell |
format |
Conference Paper/Proceeding/Abstract |
container_title |
LIPIcs, MFCS 2022 |
container_volume |
241 |
publishDate |
2022 |
institution |
Swansea University |
isbn |
978-395977256-3 |
issn |
1868-8969 |
doi_str_mv |
10.4230/LIPIcs.MFCS.2022.39 |
publisher |
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,Germany |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
url |
https://drops.dagstuhl.de/opus/volltexte/2022/16797/ |
document_store_str |
1 |
active_str |
0 |
description |
We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is doubly exponential in the ambient dimension, singly exponential in the degrees of the polynomials used to define the semialgebraic set, and singly exponential in the bitsize of the coefficients of these polynomials and the bitsize of the matrix entries. We show that our bound is tight by providing a matching lower bound. |
published_date |
2022-08-02T07:58:51Z |
_version_ |
1829450894873198592 |
score |
11.059829 |