Journal article 716 views 69 downloads
Uncovering biosynthetic relationships between antifungal nonadrides and octadrides
Chemical Science, Volume: 11, Issue: 42, Pages: 11570 - 11578
Swansea University Author: Claudio Greco
-
PDF | Version of Record
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Download (1.5MB)
DOI (Published version): 10.1039/d0sc04309e
Abstract
Maleidrides are a class of bioactive secondary metabolites unique to filamentous fungi, which contain one or more maleic anhydrides fused to a 7-, 8- or 9- membered carbocycle (named heptadrides, octadrides and nonadrides respectively). Herein structural and biosynthetic studies on the antifungal oc...
Published in: | Chemical Science |
---|---|
ISSN: | 2041-6520 2041-6539 |
Published: |
Royal Society of Chemistry (RSC)
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa61521 |
first_indexed |
2022-10-20T11:41:32Z |
---|---|
last_indexed |
2023-01-13T19:22:19Z |
id |
cronfa61521 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-20T12:42:48.9419358</datestamp><bib-version>v2</bib-version><id>61521</id><entry>2022-10-10</entry><title>Uncovering biosynthetic relationships between antifungal nonadrides and octadrides</title><swanseaauthors><author><sid>cacac6459bd7cf4a241f63661006036f</sid><ORCID>0000-0003-3067-0999</ORCID><firstname>Claudio</firstname><surname>Greco</surname><name>Claudio Greco</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-10-10</date><deptcode>BGPS</deptcode><abstract>Maleidrides are a class of bioactive secondary metabolites unique to filamentous fungi, which contain one or more maleic anhydrides fused to a 7-, 8- or 9- membered carbocycle (named heptadrides, octadrides and nonadrides respectively). Herein structural and biosynthetic studies on the antifungal octadride, zopfiellin, and nonadrides scytalidin, deoxyscytalidin and castaneiolide are described. A combination of genome sequencing, bioinformatic analyses, gene disruptions, biotransformations, isotopic feeding studies, NMR and X-ray crystallography revealed that they share a common biosynthetic pathway, diverging only after the nonadride deoxyscytalidin. 5-Hydroxylation of deoxyscytalidin occurs prior to ring contraction in the zopfiellin pathway of Diffractella curvata. In Scytalidium album, 6-hydroxylation – confirmed as being catalysed by the α-ketoglutarate dependent oxidoreductase ScyL2 – converts deoxyscytalidin to scytalidin, in the final step in the scytalidin pathway. Feeding scytalidin to a zopfiellin PKS knockout strain led to the production of the nonadride castaneiolide and two novel ring-open maleidrides.</abstract><type>Journal Article</type><journal>Chemical Science</journal><volume>11</volume><journalNumber>42</journalNumber><paginationStart>11570</paginationStart><paginationEnd>11578</paginationEnd><publisher>Royal Society of Chemistry (RSC)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2041-6520</issnPrint><issnElectronic>2041-6539</issnElectronic><keywords/><publishedDay>7</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-10-07</publishedDate><doi>10.1039/d0sc04309e</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>We thank BBSRC (BB/K002341/1) and Syngenta for funding
(KMJdMS, CG and ZS) and a PhD studentship BB/P504804/1
(CS). We are also grateful to MRC (MR/N029909/1) (funding
for TTD) and EPSRC (EP/L015366/1), Bristol Chemical Synthesis
Centre for Doctoral Training, which provided PhD studentships
(DMH and DOF). We are also very grateful to BBSRC and EPSRC
for funding instrumentation via the Bristol Centre for Synthetic
Biology (BB/L01386X/1).</funders><projectreference/><lastEdited>2022-10-20T12:42:48.9419358</lastEdited><Created>2022-10-10T17:25:00.2732449</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Biosciences</level></path><authors><author><firstname>Kate M. J. de</firstname><surname>Mattos-Shipley</surname><order>1</order></author><author><firstname>Catherine E.</firstname><surname>Spencer</surname><orcid>0000-0001-8174-0913</orcid><order>2</order></author><author><firstname>Claudio</firstname><surname>Greco</surname><orcid>0000-0003-3067-0999</orcid><order>3</order></author><author><firstname>David M.</firstname><surname>Heard</surname><orcid>0000-0003-3005-8222</orcid><order>4</order></author><author><firstname>Daniel E.</firstname><surname>O'Flynn</surname><order>5</order></author><author><firstname>Trong T.</firstname><surname>Dao</surname><orcid>0000-0003-4741-1678</orcid><order>6</order></author><author><firstname>Zhongshu</firstname><surname>Song</surname><order>7</order></author><author><firstname>Nicholas P.</firstname><surname>Mulholland</surname><order>8</order></author><author><firstname>Jason L.</firstname><surname>Vincent</surname><order>9</order></author><author><firstname>Thomas J.</firstname><surname>Simpson</surname><orcid>0000-0003-0777-1935</orcid><order>10</order></author><author><firstname>Russell J.</firstname><surname>Cox</surname><orcid>0000-0002-1844-0157</orcid><order>11</order></author><author><firstname>Andrew M.</firstname><surname>Bailey</surname><orcid>0000-0002-7594-3703</orcid><order>12</order></author><author><firstname>Christine L.</firstname><surname>Willis</surname><orcid>0000-0002-3919-3642</orcid><order>13</order></author></authors><documents><document><filename>61521__25518__d6ecbaf803954090958a221ad1de1a0b.pdf</filename><originalFilename>61521_VoR.pdf</originalFilename><uploaded>2022-10-20T12:41:58.0618988</uploaded><type>Output</type><contentLength>1574012</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/3.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-10-20T12:42:48.9419358 v2 61521 2022-10-10 Uncovering biosynthetic relationships between antifungal nonadrides and octadrides cacac6459bd7cf4a241f63661006036f 0000-0003-3067-0999 Claudio Greco Claudio Greco true false 2022-10-10 BGPS Maleidrides are a class of bioactive secondary metabolites unique to filamentous fungi, which contain one or more maleic anhydrides fused to a 7-, 8- or 9- membered carbocycle (named heptadrides, octadrides and nonadrides respectively). Herein structural and biosynthetic studies on the antifungal octadride, zopfiellin, and nonadrides scytalidin, deoxyscytalidin and castaneiolide are described. A combination of genome sequencing, bioinformatic analyses, gene disruptions, biotransformations, isotopic feeding studies, NMR and X-ray crystallography revealed that they share a common biosynthetic pathway, diverging only after the nonadride deoxyscytalidin. 5-Hydroxylation of deoxyscytalidin occurs prior to ring contraction in the zopfiellin pathway of Diffractella curvata. In Scytalidium album, 6-hydroxylation – confirmed as being catalysed by the α-ketoglutarate dependent oxidoreductase ScyL2 – converts deoxyscytalidin to scytalidin, in the final step in the scytalidin pathway. Feeding scytalidin to a zopfiellin PKS knockout strain led to the production of the nonadride castaneiolide and two novel ring-open maleidrides. Journal Article Chemical Science 11 42 11570 11578 Royal Society of Chemistry (RSC) 2041-6520 2041-6539 7 10 2020 2020-10-07 10.1039/d0sc04309e COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University We thank BBSRC (BB/K002341/1) and Syngenta for funding (KMJdMS, CG and ZS) and a PhD studentship BB/P504804/1 (CS). We are also grateful to MRC (MR/N029909/1) (funding for TTD) and EPSRC (EP/L015366/1), Bristol Chemical Synthesis Centre for Doctoral Training, which provided PhD studentships (DMH and DOF). We are also very grateful to BBSRC and EPSRC for funding instrumentation via the Bristol Centre for Synthetic Biology (BB/L01386X/1). 2022-10-20T12:42:48.9419358 2022-10-10T17:25:00.2732449 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Biosciences Kate M. J. de Mattos-Shipley 1 Catherine E. Spencer 0000-0001-8174-0913 2 Claudio Greco 0000-0003-3067-0999 3 David M. Heard 0000-0003-3005-8222 4 Daniel E. O'Flynn 5 Trong T. Dao 0000-0003-4741-1678 6 Zhongshu Song 7 Nicholas P. Mulholland 8 Jason L. Vincent 9 Thomas J. Simpson 0000-0003-0777-1935 10 Russell J. Cox 0000-0002-1844-0157 11 Andrew M. Bailey 0000-0002-7594-3703 12 Christine L. Willis 0000-0002-3919-3642 13 61521__25518__d6ecbaf803954090958a221ad1de1a0b.pdf 61521_VoR.pdf 2022-10-20T12:41:58.0618988 Output 1574012 application/pdf Version of Record true This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. true eng http://creativecommons.org/licenses/by/3.0/ |
title |
Uncovering biosynthetic relationships between antifungal nonadrides and octadrides |
spellingShingle |
Uncovering biosynthetic relationships between antifungal nonadrides and octadrides Claudio Greco |
title_short |
Uncovering biosynthetic relationships between antifungal nonadrides and octadrides |
title_full |
Uncovering biosynthetic relationships between antifungal nonadrides and octadrides |
title_fullStr |
Uncovering biosynthetic relationships between antifungal nonadrides and octadrides |
title_full_unstemmed |
Uncovering biosynthetic relationships between antifungal nonadrides and octadrides |
title_sort |
Uncovering biosynthetic relationships between antifungal nonadrides and octadrides |
author_id_str_mv |
cacac6459bd7cf4a241f63661006036f |
author_id_fullname_str_mv |
cacac6459bd7cf4a241f63661006036f_***_Claudio Greco |
author |
Claudio Greco |
author2 |
Kate M. J. de Mattos-Shipley Catherine E. Spencer Claudio Greco David M. Heard Daniel E. O'Flynn Trong T. Dao Zhongshu Song Nicholas P. Mulholland Jason L. Vincent Thomas J. Simpson Russell J. Cox Andrew M. Bailey Christine L. Willis |
format |
Journal article |
container_title |
Chemical Science |
container_volume |
11 |
container_issue |
42 |
container_start_page |
11570 |
publishDate |
2020 |
institution |
Swansea University |
issn |
2041-6520 2041-6539 |
doi_str_mv |
10.1039/d0sc04309e |
publisher |
Royal Society of Chemistry (RSC) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Biosciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Biosciences |
document_store_str |
1 |
active_str |
0 |
description |
Maleidrides are a class of bioactive secondary metabolites unique to filamentous fungi, which contain one or more maleic anhydrides fused to a 7-, 8- or 9- membered carbocycle (named heptadrides, octadrides and nonadrides respectively). Herein structural and biosynthetic studies on the antifungal octadride, zopfiellin, and nonadrides scytalidin, deoxyscytalidin and castaneiolide are described. A combination of genome sequencing, bioinformatic analyses, gene disruptions, biotransformations, isotopic feeding studies, NMR and X-ray crystallography revealed that they share a common biosynthetic pathway, diverging only after the nonadride deoxyscytalidin. 5-Hydroxylation of deoxyscytalidin occurs prior to ring contraction in the zopfiellin pathway of Diffractella curvata. In Scytalidium album, 6-hydroxylation – confirmed as being catalysed by the α-ketoglutarate dependent oxidoreductase ScyL2 – converts deoxyscytalidin to scytalidin, in the final step in the scytalidin pathway. Feeding scytalidin to a zopfiellin PKS knockout strain led to the production of the nonadride castaneiolide and two novel ring-open maleidrides. |
published_date |
2020-10-07T20:28:53Z |
_version_ |
1822072906844209152 |
score |
11.048302 |