No Cover Image

Journal article 514 views 83 downloads

An end-to-end dynamic point cloud geometry compression in latent space

Zhaoyi Jiang Orcid Logo, Guoliang Wang, Gary Tam Orcid Logo, Chao Song, Frederick W.B. Li, Bailin Yang

Displays, Volume: 80, Start page: 102528

Swansea University Author: Gary Tam Orcid Logo

  • cgi2023_elsarticle_DISPLA__Copy_accepted.pdf

    PDF | Accepted Manuscript

    For the purpose of Open Access the author has applied a CC BY copyright licence to any Author Accepted Manuscript version arising from this submission.

    Download (1.43MB)

Abstract

Dynamic point clouds are widely used for 3D data representation in various applications such as immersive and mixed reality, robotics and autonomous driving. However, their irregularity and large scale make efficient compression and transmission a challenge. Existing methods require high bitrates to...

Full description

Published in: Displays
ISSN: 0141-9382
Published: Elsevier BV 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa64182
Abstract: Dynamic point clouds are widely used for 3D data representation in various applications such as immersive and mixed reality, robotics and autonomous driving. However, their irregularity and large scale make efficient compression and transmission a challenge. Existing methods require high bitrates to encode point clouds since temporal correlation is not well considered. This paper proposes an end-to-end dynamic point cloud compression network that operates in latent space, resulting in more accurate motion estimation and more effective motion compensation. Specifically, a multi-scale motion estimation network is introduced to obtain accurate motion vectors. Motion information computed at a coarser level is upsampled and warped to the finer level based on cost volume analysis for motion compensation. Additionally, a residual compression network is designed to mitigate the effects of noise and inaccurate predictions by encoding latent residuals, resulting in smaller conditional entropy and better results. The proposed method achieves an average 12.09% and 14.76% (D2) BD-Rate gain over state-of-the-art Deep Dynamic Point Cloud Compression (D-DPCC) in experimental results. Compared to V-PCC, our framework showed an average improvement of 81.29% (D1) and 77.57% (D2).
Keywords: Dynamic point clouds compression, Geometry encoding, Latent scene flow, Deep entropy model
College: Faculty of Science and Engineering
Funders: This research was partially supported by Zhejiang Province Natural Science Foundation No. LY21F020013, LY22F020013, the National Natural Science Foundation of China No. 62172366. Gary Tam is supported by the Royal Society grant IEC/NSFC/211159. For the purpose of Open Access the author has applied a CC BY copyright licence to any Author Accepted Manuscript version arising from this submission.
Start Page: 102528