Journal article 428 views 42 downloads
Heaps of modules and affine spaces
Annali di Matematica Pura ed Applicata (1923 -), Volume: 203, Issue: 1, Pages: 403 - 445
Swansea University Author: Tomasz Brzezinski
-
PDF | Version of Record
This article is licensed under a Creative Commons Attribution 4.0 International License (CC-BY).
Download (656.13KB)
DOI (Published version): 10.1007/s10231-023-01369-0
Abstract
A notion of heaps of modules as an affine version of modules over a ring or, more generally, over a truss, is introduced and studied. Basic properties of heaps of modules are derived. Examples arising from geometry (connections, affine spaces) and algebraic topology (chain contractions) are presente...
Published in: | Annali di Matematica Pura ed Applicata (1923 -) |
---|---|
ISSN: | 0373-3114 1618-1891 |
Published: |
Springer Science and Business Media LLC
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa64523 |
first_indexed |
2023-09-13T10:55:00Z |
---|---|
last_indexed |
2024-11-25T14:14:11Z |
id |
cronfa64523 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-08-22T11:43:14.9386426</datestamp><bib-version>v2</bib-version><id>64523</id><entry>2023-09-13</entry><title>Heaps of modules and affine spaces</title><swanseaauthors><author><sid>30466d840b59627325596fbbb2c82754</sid><ORCID>0000-0001-6270-3439</ORCID><firstname>Tomasz</firstname><surname>Brzezinski</surname><name>Tomasz Brzezinski</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-09-13</date><deptcode>MACS</deptcode><abstract>A notion of heaps of modules as an affine version of modules over a ring or, more generally, over a truss, is introduced and studied. Basic properties of heaps of modules are derived. Examples arising from geometry (connections, affine spaces) and algebraic topology (chain contractions) are presented. Relationships between heaps of modules, modules over a ring and affine spaces are revealed and analysed.</abstract><type>Journal Article</type><journal>Annali di Matematica Pura ed Applicata (1923 -)</journal><volume>203</volume><journalNumber>1</journalNumber><paginationStart>403</paginationStart><paginationEnd>445</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0373-3114</issnPrint><issnElectronic>1618-1891</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-02-01</publishedDate><doi>10.1007/s10231-023-01369-0</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>The research of S. Breaz is supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI, project number PN-III-P4-ID-PCE-2020-0454, within PNCDI III.
The research of T. Brzeziński is partially supported by the National Science Centre, Poland, grant no. 2019/35/B/ST1/01115.
The research of B. Rybołowicz is supported by the EPSRC grant EP/V008129/1.
P. Saracco is a Chargé de Recherches of the Fonds de la Recherche Scientifique—FNRS and a member of the “National Group for Algebraic and Geometric Structures and their Applications” (GNSAGA-INdAM).</funders><projectreference/><lastEdited>2024-08-22T11:43:14.9386426</lastEdited><Created>2023-09-13T11:43:47.6803640</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Simion</firstname><surname>Breaz</surname><order>1</order></author><author><firstname>Tomasz</firstname><surname>Brzezinski</surname><orcid>0000-0001-6270-3439</orcid><order>2</order></author><author><firstname>Bernard</firstname><surname>Rybołowicz</surname><order>3</order></author><author><firstname>Paolo</firstname><surname>Saracco</surname><orcid>0000-0001-5693-7722</orcid><order>4</order></author></authors><documents><document><filename>64523__28527__284c885119694a3d8c1ed5bcde3be553.pdf</filename><originalFilename>64523.pdf</originalFilename><uploaded>2023-09-13T11:53:57.4615259</uploaded><type>Output</type><contentLength>671881</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This article is licensed under a Creative Commons Attribution 4.0 International License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-08-22T11:43:14.9386426 v2 64523 2023-09-13 Heaps of modules and affine spaces 30466d840b59627325596fbbb2c82754 0000-0001-6270-3439 Tomasz Brzezinski Tomasz Brzezinski true false 2023-09-13 MACS A notion of heaps of modules as an affine version of modules over a ring or, more generally, over a truss, is introduced and studied. Basic properties of heaps of modules are derived. Examples arising from geometry (connections, affine spaces) and algebraic topology (chain contractions) are presented. Relationships between heaps of modules, modules over a ring and affine spaces are revealed and analysed. Journal Article Annali di Matematica Pura ed Applicata (1923 -) 203 1 403 445 Springer Science and Business Media LLC 0373-3114 1618-1891 1 2 2024 2024-02-01 10.1007/s10231-023-01369-0 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University SU Library paid the OA fee (TA Institutional Deal) The research of S. Breaz is supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI–UEFISCDI, project number PN-III-P4-ID-PCE-2020-0454, within PNCDI III. The research of T. Brzeziński is partially supported by the National Science Centre, Poland, grant no. 2019/35/B/ST1/01115. The research of B. Rybołowicz is supported by the EPSRC grant EP/V008129/1. P. Saracco is a Chargé de Recherches of the Fonds de la Recherche Scientifique—FNRS and a member of the “National Group for Algebraic and Geometric Structures and their Applications” (GNSAGA-INdAM). 2024-08-22T11:43:14.9386426 2023-09-13T11:43:47.6803640 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Simion Breaz 1 Tomasz Brzezinski 0000-0001-6270-3439 2 Bernard Rybołowicz 3 Paolo Saracco 0000-0001-5693-7722 4 64523__28527__284c885119694a3d8c1ed5bcde3be553.pdf 64523.pdf 2023-09-13T11:53:57.4615259 Output 671881 application/pdf Version of Record true This article is licensed under a Creative Commons Attribution 4.0 International License (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Heaps of modules and affine spaces |
spellingShingle |
Heaps of modules and affine spaces Tomasz Brzezinski |
title_short |
Heaps of modules and affine spaces |
title_full |
Heaps of modules and affine spaces |
title_fullStr |
Heaps of modules and affine spaces |
title_full_unstemmed |
Heaps of modules and affine spaces |
title_sort |
Heaps of modules and affine spaces |
author_id_str_mv |
30466d840b59627325596fbbb2c82754 |
author_id_fullname_str_mv |
30466d840b59627325596fbbb2c82754_***_Tomasz Brzezinski |
author |
Tomasz Brzezinski |
author2 |
Simion Breaz Tomasz Brzezinski Bernard Rybołowicz Paolo Saracco |
format |
Journal article |
container_title |
Annali di Matematica Pura ed Applicata (1923 -) |
container_volume |
203 |
container_issue |
1 |
container_start_page |
403 |
publishDate |
2024 |
institution |
Swansea University |
issn |
0373-3114 1618-1891 |
doi_str_mv |
10.1007/s10231-023-01369-0 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
A notion of heaps of modules as an affine version of modules over a ring or, more generally, over a truss, is introduced and studied. Basic properties of heaps of modules are derived. Examples arising from geometry (connections, affine spaces) and algebraic topology (chain contractions) are presented. Relationships between heaps of modules, modules over a ring and affine spaces are revealed and analysed. |
published_date |
2024-02-01T14:28:59Z |
_version_ |
1821959666346754048 |
score |
11.048149 |