Journal article 407 views
Glycosylated MoS<sub>2</sub> Sheets for Capturing and Deactivating <i>E. coli</i> Bacteria: Combined Effects of Multivalent Binding and Sheet Size
Advanced Materials Interfaces, Volume: 9, Issue: 9
Swansea University Author: Sumati Bhatia
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1002/admi.202102315
Abstract
Molybdenum disulfide (MoS2) holds great promise for antibacterial applications owing to its strong photothermal performance and biocompatibility. Most of its antibacterial explorations have sought enhanced antibacterial potency through designing new hybrid inorganic materials, the relationship betwe...
Published in: | Advanced Materials Interfaces |
---|---|
ISSN: | 2196-7350 2196-7350 |
Published: |
Wiley
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa64857 |
first_indexed |
2023-11-17T18:27:43Z |
---|---|
last_indexed |
2024-11-25T14:14:53Z |
id |
cronfa64857 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-12-21T15:05:48.7400933</datestamp><bib-version>v2</bib-version><id>64857</id><entry>2023-11-01</entry><title>Glycosylated MoS<sub>2</sub> Sheets for Capturing and Deactivating <i>E. coli</i> Bacteria: Combined Effects of Multivalent Binding and Sheet Size</title><swanseaauthors><author><sid>a6b1181ebdbe42bd03b24cbdb559d082</sid><ORCID>0000-0002-5123-4937</ORCID><firstname>Sumati</firstname><surname>Bhatia</surname><name>Sumati Bhatia</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-11-01</date><deptcode>EAAS</deptcode><abstract>Molybdenum disulfide (MoS2) holds great promise for antibacterial applications owing to its strong photothermal performance and biocompatibility. Most of its antibacterial explorations have sought enhanced antibacterial potency through designing new hybrid inorganic materials, the relationship between its physiochemical properties and antibacterial activities has yet to be explored. This work is the first to investigate the combination effects of different sized and functionalized MoS2 sheets on their antibacterial activities. The bacterial capture abilities of 3 µm mannosylated, galactosylated, and glucosylated sheets, as well as 300 nm mannosylated sheets, all with similar sugar densities, are compared. Only mannosylated MoS2 sheets are found to agglutinate normal Escherichia coli (E. coli) and large mannosylated MoS2 sheets show the strongest E. coli agglutination. Despite slightly weaker photothermal performance under near-infrared (NIR) laser irradiation, large mannosylated MoS2 sheets exhibit higher antibacterial activity than the smaller sheets. By much stronger specific multivalent binding, large sheets capture E. coli more efficiently and compensate for their reduced photothermal activity. Besides providing a facile approach to eliminate E. coli bacteria, these findings offer valuable guidance for future development of 2D nanomaterial-based antibacterial agents and filter holder materials, where large-functionalized sheets can capture and eliminate bacteria powerfully.</abstract><type>Journal Article</type><journal>Advanced Materials Interfaces</journal><volume>9</volume><journalNumber>9</journalNumber><paginationStart/><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2196-7350</issnPrint><issnElectronic>2196-7350</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-03-01</publishedDate><doi>10.1002/admi.202102315</doi><url>http://dx.doi.org/10.1002/admi.202102315</url><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders/><projectreference/><lastEdited>2023-12-21T15:05:48.7400933</lastEdited><Created>2023-11-01T10:34:10.3542407</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemistry</level></path><authors><author><firstname>Shaohui</firstname><surname>Xu</surname><orcid>0000-0001-6470-2755</orcid><order>1</order></author><author><firstname>Sumati</firstname><surname>Bhatia</surname><orcid>0000-0002-5123-4937</orcid><order>2</order></author><author><firstname>Xin</firstname><surname>Fan</surname><order>3</order></author><author><firstname>Philip</firstname><surname>Nickl</surname><order>4</order></author><author><firstname>Rainer</firstname><surname>Haag</surname><orcid>0000-0003-3840-162x</orcid><order>5</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2023-12-21T15:05:48.7400933 v2 64857 2023-11-01 Glycosylated MoS<sub>2</sub> Sheets for Capturing and Deactivating <i>E. coli</i> Bacteria: Combined Effects of Multivalent Binding and Sheet Size a6b1181ebdbe42bd03b24cbdb559d082 0000-0002-5123-4937 Sumati Bhatia Sumati Bhatia true false 2023-11-01 EAAS Molybdenum disulfide (MoS2) holds great promise for antibacterial applications owing to its strong photothermal performance and biocompatibility. Most of its antibacterial explorations have sought enhanced antibacterial potency through designing new hybrid inorganic materials, the relationship between its physiochemical properties and antibacterial activities has yet to be explored. This work is the first to investigate the combination effects of different sized and functionalized MoS2 sheets on their antibacterial activities. The bacterial capture abilities of 3 µm mannosylated, galactosylated, and glucosylated sheets, as well as 300 nm mannosylated sheets, all with similar sugar densities, are compared. Only mannosylated MoS2 sheets are found to agglutinate normal Escherichia coli (E. coli) and large mannosylated MoS2 sheets show the strongest E. coli agglutination. Despite slightly weaker photothermal performance under near-infrared (NIR) laser irradiation, large mannosylated MoS2 sheets exhibit higher antibacterial activity than the smaller sheets. By much stronger specific multivalent binding, large sheets capture E. coli more efficiently and compensate for their reduced photothermal activity. Besides providing a facile approach to eliminate E. coli bacteria, these findings offer valuable guidance for future development of 2D nanomaterial-based antibacterial agents and filter holder materials, where large-functionalized sheets can capture and eliminate bacteria powerfully. Journal Article Advanced Materials Interfaces 9 9 Wiley 2196-7350 2196-7350 1 3 2022 2022-03-01 10.1002/admi.202102315 http://dx.doi.org/10.1002/admi.202102315 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University Another institution paid the OA fee 2023-12-21T15:05:48.7400933 2023-11-01T10:34:10.3542407 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemistry Shaohui Xu 0000-0001-6470-2755 1 Sumati Bhatia 0000-0002-5123-4937 2 Xin Fan 3 Philip Nickl 4 Rainer Haag 0000-0003-3840-162x 5 |
title |
Glycosylated MoS<sub>2</sub> Sheets for Capturing and Deactivating <i>E. coli</i> Bacteria: Combined Effects of Multivalent Binding and Sheet Size |
spellingShingle |
Glycosylated MoS<sub>2</sub> Sheets for Capturing and Deactivating <i>E. coli</i> Bacteria: Combined Effects of Multivalent Binding and Sheet Size Sumati Bhatia |
title_short |
Glycosylated MoS<sub>2</sub> Sheets for Capturing and Deactivating <i>E. coli</i> Bacteria: Combined Effects of Multivalent Binding and Sheet Size |
title_full |
Glycosylated MoS<sub>2</sub> Sheets for Capturing and Deactivating <i>E. coli</i> Bacteria: Combined Effects of Multivalent Binding and Sheet Size |
title_fullStr |
Glycosylated MoS<sub>2</sub> Sheets for Capturing and Deactivating <i>E. coli</i> Bacteria: Combined Effects of Multivalent Binding and Sheet Size |
title_full_unstemmed |
Glycosylated MoS<sub>2</sub> Sheets for Capturing and Deactivating <i>E. coli</i> Bacteria: Combined Effects of Multivalent Binding and Sheet Size |
title_sort |
Glycosylated MoS<sub>2</sub> Sheets for Capturing and Deactivating <i>E. coli</i> Bacteria: Combined Effects of Multivalent Binding and Sheet Size |
author_id_str_mv |
a6b1181ebdbe42bd03b24cbdb559d082 |
author_id_fullname_str_mv |
a6b1181ebdbe42bd03b24cbdb559d082_***_Sumati Bhatia |
author |
Sumati Bhatia |
author2 |
Shaohui Xu Sumati Bhatia Xin Fan Philip Nickl Rainer Haag |
format |
Journal article |
container_title |
Advanced Materials Interfaces |
container_volume |
9 |
container_issue |
9 |
publishDate |
2022 |
institution |
Swansea University |
issn |
2196-7350 2196-7350 |
doi_str_mv |
10.1002/admi.202102315 |
publisher |
Wiley |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Chemistry{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemistry |
url |
http://dx.doi.org/10.1002/admi.202102315 |
document_store_str |
0 |
active_str |
0 |
description |
Molybdenum disulfide (MoS2) holds great promise for antibacterial applications owing to its strong photothermal performance and biocompatibility. Most of its antibacterial explorations have sought enhanced antibacterial potency through designing new hybrid inorganic materials, the relationship between its physiochemical properties and antibacterial activities has yet to be explored. This work is the first to investigate the combination effects of different sized and functionalized MoS2 sheets on their antibacterial activities. The bacterial capture abilities of 3 µm mannosylated, galactosylated, and glucosylated sheets, as well as 300 nm mannosylated sheets, all with similar sugar densities, are compared. Only mannosylated MoS2 sheets are found to agglutinate normal Escherichia coli (E. coli) and large mannosylated MoS2 sheets show the strongest E. coli agglutination. Despite slightly weaker photothermal performance under near-infrared (NIR) laser irradiation, large mannosylated MoS2 sheets exhibit higher antibacterial activity than the smaller sheets. By much stronger specific multivalent binding, large sheets capture E. coli more efficiently and compensate for their reduced photothermal activity. Besides providing a facile approach to eliminate E. coli bacteria, these findings offer valuable guidance for future development of 2D nanomaterial-based antibacterial agents and filter holder materials, where large-functionalized sheets can capture and eliminate bacteria powerfully. |
published_date |
2022-03-01T14:28:46Z |
_version_ |
1821325474368847872 |
score |
11.564073 |