Journal article 355 views 38 downloads
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks
Annals of Operations Research
Swansea University Author: Mohammad Abedin
-
PDF | Version of Record
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Download (1.96MB)
DOI (Published version): 10.1007/s10479-023-05722-7
Abstract
Recent trends in global climate modeling, coupled with the availability of more fine-scaledatasets, have opened up opportunities for deep learning-based climate prediction to improvethe accuracy of predictions over traditional physics-based models. For this, however, largeensembles of data are neede...
Published in: | Annals of Operations Research |
---|---|
ISSN: | 0254-5330 1572-9338 |
Published: |
Springer Science and Business Media LLC
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa65186 |
first_indexed |
2023-12-02T10:37:35Z |
---|---|
last_indexed |
2024-11-28T13:41:30Z |
id |
cronfa65186 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-11-28T11:28:38.1467165</datestamp><bib-version>v2</bib-version><id>65186</id><entry>2023-12-02</entry><title>Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks</title><swanseaauthors><author><sid>4ed8c020eae0c9bec4f5d9495d86d415</sid><ORCID>0000-0002-4688-0619</ORCID><firstname>Mohammad</firstname><surname>Abedin</surname><name>Mohammad Abedin</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-12-02</date><deptcode>CBAE</deptcode><abstract>Recent trends in global climate modeling, coupled with the availability of more fine-scaledatasets, have opened up opportunities for deep learning-based climate prediction to improvethe accuracy of predictions over traditional physics-based models. For this, however, largeensembles of data are needed. Generative models have recently proven to be a suitablesolution to this problem. For a sound generative model for time-series forecasting, it isessential that temporal dynamics are preserved in that the generated data obey the originaldata distributions over time. Existing forecasting methods aided by generative models arenot adequate for capturing such temporal relationships. Recently, generative models havebeen proposed that generate realistic time-series data by exploiting the combinations ofunsupervised and supervised learning. However, these models suffer from instable learningand mode collapse problems. To overcome these issues, here we propose Wasserstein TimeSeries Generative Adversarial Network (WTGAN), a new forecasting model that effectivelyimitates the dynamics of the original data by generating realistic synthetic time-series data. Tovalidate the proposed forecasting model, we evaluate it by backtesting the challenging decadalclimate forecasting problem. We show that the proposed forecasting model outperformsstate-of-the- art generative models. Another advantage of the proposed model is that onceWTGAN is tuned, generating time-series data is very fast, whereas standard simulators.</abstract><type>Journal Article</type><journal>Annals of Operations Research</journal><volume>0</volume><journalNumber/><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0254-5330</issnPrint><issnElectronic>1572-9338</issnElectronic><keywords>Forecasting, climate, deep learning, time series</keywords><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-12-01</publishedDate><doi>10.1007/s10479-023-05722-7</doi><url/><notes/><college>COLLEGE NANME</college><department>Management School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CBAE</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Swansea University</funders><projectreference/><lastEdited>2024-11-28T11:28:38.1467165</lastEdited><Created>2023-12-02T10:36:19.5942091</Created><path><level id="1">School of Management</level><level id="2">Accounting and Finance</level></path><authors><author><firstname>Ahmed</firstname><surname>Bouteska</surname><orcid>0000-0002-5710-501x</orcid><order>1</order></author><author><firstname>Marco Lavazza</firstname><surname>Seranto</surname><order>2</order></author><author><firstname>Petr</firstname><surname>Hajek</surname><order>3</order></author><author><firstname>Mohammad</firstname><surname>Abedin</surname><orcid>0000-0002-4688-0619</orcid><order>4</order></author></authors><documents><document><filename>65186__29840__c7b5f52ad79a44eeb9b696c27161091a.pdf</filename><originalFilename>65186.VOR.pdf</originalFilename><uploaded>2024-03-25T15:19:10.7917287</uploaded><type>Output</type><contentLength>2054640</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-11-28T11:28:38.1467165 v2 65186 2023-12-02 Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks 4ed8c020eae0c9bec4f5d9495d86d415 0000-0002-4688-0619 Mohammad Abedin Mohammad Abedin true false 2023-12-02 CBAE Recent trends in global climate modeling, coupled with the availability of more fine-scaledatasets, have opened up opportunities for deep learning-based climate prediction to improvethe accuracy of predictions over traditional physics-based models. For this, however, largeensembles of data are needed. Generative models have recently proven to be a suitablesolution to this problem. For a sound generative model for time-series forecasting, it isessential that temporal dynamics are preserved in that the generated data obey the originaldata distributions over time. Existing forecasting methods aided by generative models arenot adequate for capturing such temporal relationships. Recently, generative models havebeen proposed that generate realistic time-series data by exploiting the combinations ofunsupervised and supervised learning. However, these models suffer from instable learningand mode collapse problems. To overcome these issues, here we propose Wasserstein TimeSeries Generative Adversarial Network (WTGAN), a new forecasting model that effectivelyimitates the dynamics of the original data by generating realistic synthetic time-series data. Tovalidate the proposed forecasting model, we evaluate it by backtesting the challenging decadalclimate forecasting problem. We show that the proposed forecasting model outperformsstate-of-the- art generative models. Another advantage of the proposed model is that onceWTGAN is tuned, generating time-series data is very fast, whereas standard simulators. Journal Article Annals of Operations Research 0 Springer Science and Business Media LLC 0254-5330 1572-9338 Forecasting, climate, deep learning, time series 1 12 2023 2023-12-01 10.1007/s10479-023-05722-7 COLLEGE NANME Management School COLLEGE CODE CBAE Swansea University SU Library paid the OA fee (TA Institutional Deal) Swansea University 2024-11-28T11:28:38.1467165 2023-12-02T10:36:19.5942091 School of Management Accounting and Finance Ahmed Bouteska 0000-0002-5710-501x 1 Marco Lavazza Seranto 2 Petr Hajek 3 Mohammad Abedin 0000-0002-4688-0619 4 65186__29840__c7b5f52ad79a44eeb9b696c27161091a.pdf 65186.VOR.pdf 2024-03-25T15:19:10.7917287 Output 2054640 application/pdf Version of Record true This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks |
spellingShingle |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks Mohammad Abedin |
title_short |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks |
title_full |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks |
title_fullStr |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks |
title_full_unstemmed |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks |
title_sort |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks |
author_id_str_mv |
4ed8c020eae0c9bec4f5d9495d86d415 |
author_id_fullname_str_mv |
4ed8c020eae0c9bec4f5d9495d86d415_***_Mohammad Abedin |
author |
Mohammad Abedin |
author2 |
Ahmed Bouteska Marco Lavazza Seranto Petr Hajek Mohammad Abedin |
format |
Journal article |
container_title |
Annals of Operations Research |
container_volume |
0 |
publishDate |
2023 |
institution |
Swansea University |
issn |
0254-5330 1572-9338 |
doi_str_mv |
10.1007/s10479-023-05722-7 |
publisher |
Springer Science and Business Media LLC |
college_str |
School of Management |
hierarchytype |
|
hierarchy_top_id |
schoolofmanagement |
hierarchy_top_title |
School of Management |
hierarchy_parent_id |
schoolofmanagement |
hierarchy_parent_title |
School of Management |
department_str |
Accounting and Finance{{{_:::_}}}School of Management{{{_:::_}}}Accounting and Finance |
document_store_str |
1 |
active_str |
0 |
description |
Recent trends in global climate modeling, coupled with the availability of more fine-scaledatasets, have opened up opportunities for deep learning-based climate prediction to improvethe accuracy of predictions over traditional physics-based models. For this, however, largeensembles of data are needed. Generative models have recently proven to be a suitablesolution to this problem. For a sound generative model for time-series forecasting, it isessential that temporal dynamics are preserved in that the generated data obey the originaldata distributions over time. Existing forecasting methods aided by generative models arenot adequate for capturing such temporal relationships. Recently, generative models havebeen proposed that generate realistic time-series data by exploiting the combinations ofunsupervised and supervised learning. However, these models suffer from instable learningand mode collapse problems. To overcome these issues, here we propose Wasserstein TimeSeries Generative Adversarial Network (WTGAN), a new forecasting model that effectivelyimitates the dynamics of the original data by generating realistic synthetic time-series data. Tovalidate the proposed forecasting model, we evaluate it by backtesting the challenging decadalclimate forecasting problem. We show that the proposed forecasting model outperformsstate-of-the- art generative models. Another advantage of the proposed model is that onceWTGAN is tuned, generating time-series data is very fast, whereas standard simulators. |
published_date |
2023-12-01T14:31:17Z |
_version_ |
1821959811776905216 |
score |
11.048149 |