Journal article 865 views 140 downloads
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks
Annals of Operations Research, Volume: 355, Issue: 2, Pages: 1587 - 1605
Swansea University Author:
Mohammad Abedin
-
PDF | Version of Record
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Download (1.96MB)
DOI (Published version): 10.1007/s10479-023-05722-7
Abstract
Recent trends in global climate modeling, coupled with the availability of more fine-scale datasets, have opened up opportunities for deep learning-based climate prediction to improve the accuracy of predictions over traditional physics-based models. For this, however, large ensembles of data are ne...
| Published in: | Annals of Operations Research |
|---|---|
| ISSN: | 0254-5330 1572-9338 |
| Published: |
Springer Nature
2025
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa65186 |
| first_indexed |
2023-12-02T10:37:35Z |
|---|---|
| last_indexed |
2026-01-23T04:13:09Z |
| id |
cronfa65186 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2026-01-21T10:35:27.8354485</datestamp><bib-version>v2</bib-version><id>65186</id><entry>2023-12-02</entry><title>Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks</title><swanseaauthors><author><sid>4ed8c020eae0c9bec4f5d9495d86d415</sid><ORCID>0000-0002-4688-0619</ORCID><firstname>Mohammad</firstname><surname>Abedin</surname><name>Mohammad Abedin</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-12-02</date><deptcode>CBAE</deptcode><abstract>Recent trends in global climate modeling, coupled with the availability of more fine-scale datasets, have opened up opportunities for deep learning-based climate prediction to improve the accuracy of predictions over traditional physics-based models. For this, however, large ensembles of data are needed. Generative models have recently proven to be a suitable solution to this problem. For a sound generative model for time-series forecasting, it is essential that temporal dynamics are preserved in that the generated data obey the original data distributions over time. Existing forecasting methods aided by generative models are not adequate for capturing such temporal relationships. Recently, generative models have been proposed that generate realistic time-series data by exploiting the combinations of unsupervised and supervised learning. However, these models suffer from instable learning and mode collapse problems. To overcome these issues, here we propose Wasserstein Time-Series Generative Adversarial Network (WTGAN), a new forecasting model that effectively imitates the dynamics of the original data by generating realistic synthetic time-series data. To validate the proposed forecasting model, we evaluate it by backtesting the challenging decadal climate forecasting problem. We show that the proposed forecasting model outperforms state-of-the- art generative models. Another advantage of the proposed model is that once WTGAN is tuned, generating time-series data is very fast, whereas standard simulators consume considerable computer time. Thus, a large amount of climate data can be generated, which can substantially improve existing data-driven climate forecasting models.</abstract><type>Journal Article</type><journal>Annals of Operations Research</journal><volume>355</volume><journalNumber>2</journalNumber><paginationStart>1587</paginationStart><paginationEnd>1605</paginationEnd><publisher>Springer Nature</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0254-5330</issnPrint><issnElectronic>1572-9338</issnElectronic><keywords>Forecasting; Climate; Deep learning; Time series; Generative adversarial learning</keywords><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-12-01</publishedDate><doi>10.1007/s10479-023-05722-7</doi><url/><notes/><college>COLLEGE NANME</college><department>Management School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CBAE</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Swansea University</funders><projectreference/><lastEdited>2026-01-21T10:35:27.8354485</lastEdited><Created>2023-12-02T10:36:19.5942091</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Management - Accounting and Finance</level></path><authors><author><firstname>Ahmed</firstname><surname>Bouteska</surname><orcid>0000-0002-5710-501x</orcid><order>1</order></author><author><firstname>Marco Lavazza</firstname><surname>Seranto</surname><order>2</order></author><author><firstname>Petr</firstname><surname>Hajek</surname><order>3</order></author><author><firstname>Mohammad</firstname><surname>Abedin</surname><orcid>0000-0002-4688-0619</orcid><order>4</order></author></authors><documents><document><filename>65186__29840__c7b5f52ad79a44eeb9b696c27161091a.pdf</filename><originalFilename>65186.VOR.pdf</originalFilename><uploaded>2024-03-25T15:19:10.7917287</uploaded><type>Output</type><contentLength>2054640</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2026-01-21T10:35:27.8354485 v2 65186 2023-12-02 Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks 4ed8c020eae0c9bec4f5d9495d86d415 0000-0002-4688-0619 Mohammad Abedin Mohammad Abedin true false 2023-12-02 CBAE Recent trends in global climate modeling, coupled with the availability of more fine-scale datasets, have opened up opportunities for deep learning-based climate prediction to improve the accuracy of predictions over traditional physics-based models. For this, however, large ensembles of data are needed. Generative models have recently proven to be a suitable solution to this problem. For a sound generative model for time-series forecasting, it is essential that temporal dynamics are preserved in that the generated data obey the original data distributions over time. Existing forecasting methods aided by generative models are not adequate for capturing such temporal relationships. Recently, generative models have been proposed that generate realistic time-series data by exploiting the combinations of unsupervised and supervised learning. However, these models suffer from instable learning and mode collapse problems. To overcome these issues, here we propose Wasserstein Time-Series Generative Adversarial Network (WTGAN), a new forecasting model that effectively imitates the dynamics of the original data by generating realistic synthetic time-series data. To validate the proposed forecasting model, we evaluate it by backtesting the challenging decadal climate forecasting problem. We show that the proposed forecasting model outperforms state-of-the- art generative models. Another advantage of the proposed model is that once WTGAN is tuned, generating time-series data is very fast, whereas standard simulators consume considerable computer time. Thus, a large amount of climate data can be generated, which can substantially improve existing data-driven climate forecasting models. Journal Article Annals of Operations Research 355 2 1587 1605 Springer Nature 0254-5330 1572-9338 Forecasting; Climate; Deep learning; Time series; Generative adversarial learning 1 12 2025 2025-12-01 10.1007/s10479-023-05722-7 COLLEGE NANME Management School COLLEGE CODE CBAE Swansea University SU Library paid the OA fee (TA Institutional Deal) Swansea University 2026-01-21T10:35:27.8354485 2023-12-02T10:36:19.5942091 Faculty of Humanities and Social Sciences School of Management - Accounting and Finance Ahmed Bouteska 0000-0002-5710-501x 1 Marco Lavazza Seranto 2 Petr Hajek 3 Mohammad Abedin 0000-0002-4688-0619 4 65186__29840__c7b5f52ad79a44eeb9b696c27161091a.pdf 65186.VOR.pdf 2024-03-25T15:19:10.7917287 Output 2054640 application/pdf Version of Record true This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. true eng http://creativecommons.org/licenses/by/4.0/ |
| title |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks |
| spellingShingle |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks Mohammad Abedin |
| title_short |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks |
| title_full |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks |
| title_fullStr |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks |
| title_full_unstemmed |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks |
| title_sort |
Data-driven decadal climate forecasting using Wasserstein time-series generative adversarial networks |
| author_id_str_mv |
4ed8c020eae0c9bec4f5d9495d86d415 |
| author_id_fullname_str_mv |
4ed8c020eae0c9bec4f5d9495d86d415_***_Mohammad Abedin |
| author |
Mohammad Abedin |
| author2 |
Ahmed Bouteska Marco Lavazza Seranto Petr Hajek Mohammad Abedin |
| format |
Journal article |
| container_title |
Annals of Operations Research |
| container_volume |
355 |
| container_issue |
2 |
| container_start_page |
1587 |
| publishDate |
2025 |
| institution |
Swansea University |
| issn |
0254-5330 1572-9338 |
| doi_str_mv |
10.1007/s10479-023-05722-7 |
| publisher |
Springer Nature |
| college_str |
Faculty of Humanities and Social Sciences |
| hierarchytype |
|
| hierarchy_top_id |
facultyofhumanitiesandsocialsciences |
| hierarchy_top_title |
Faculty of Humanities and Social Sciences |
| hierarchy_parent_id |
facultyofhumanitiesandsocialsciences |
| hierarchy_parent_title |
Faculty of Humanities and Social Sciences |
| department_str |
School of Management - Accounting and Finance{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Management - Accounting and Finance |
| document_store_str |
1 |
| active_str |
0 |
| description |
Recent trends in global climate modeling, coupled with the availability of more fine-scale datasets, have opened up opportunities for deep learning-based climate prediction to improve the accuracy of predictions over traditional physics-based models. For this, however, large ensembles of data are needed. Generative models have recently proven to be a suitable solution to this problem. For a sound generative model for time-series forecasting, it is essential that temporal dynamics are preserved in that the generated data obey the original data distributions over time. Existing forecasting methods aided by generative models are not adequate for capturing such temporal relationships. Recently, generative models have been proposed that generate realistic time-series data by exploiting the combinations of unsupervised and supervised learning. However, these models suffer from instable learning and mode collapse problems. To overcome these issues, here we propose Wasserstein Time-Series Generative Adversarial Network (WTGAN), a new forecasting model that effectively imitates the dynamics of the original data by generating realistic synthetic time-series data. To validate the proposed forecasting model, we evaluate it by backtesting the challenging decadal climate forecasting problem. We show that the proposed forecasting model outperforms state-of-the- art generative models. Another advantage of the proposed model is that once WTGAN is tuned, generating time-series data is very fast, whereas standard simulators consume considerable computer time. Thus, a large amount of climate data can be generated, which can substantially improve existing data-driven climate forecasting models. |
| published_date |
2025-12-01T05:17:14Z |
| _version_ |
1856804785498357760 |
| score |
11.096047 |

