Journal article 357 views
Comparative study of Transformer- and LSTM-based machine learning methods for transient thermal field reconstruction
Computational Thermal Sciences: An International Journal, Volume: 16, Issue: 3
Swansea University Authors: Wiera Bielajewa, Perumal Nithiarasu
DOI (Published version): 10.1615/computthermalscien.2023049936
Abstract
Comparative study of Transformer- and LSTM-based machine learning methods for transient thermal field reconstruction
Published in: | Computational Thermal Sciences: An International Journal |
---|---|
ISSN: | 1940-2503 1940-2554 |
Published: |
Begell House
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa65266 |
first_indexed |
2023-12-12T09:19:23Z |
---|---|
last_indexed |
2024-11-25T14:15:43Z |
id |
cronfa65266 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-04-10T12:29:36.5190018</datestamp><bib-version>v2</bib-version><id>65266</id><entry>2023-12-12</entry><title>Comparative study of Transformer- and LSTM-based machine learning methods for transient thermal field reconstruction</title><swanseaauthors><author><sid>aeac9bf0d7f8e1377e32fdf5143713c5</sid><firstname>Wiera</firstname><surname>Bielajewa</surname><name>Wiera Bielajewa</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>3b28bf59358fc2b9bd9a46897dbfc92d</sid><ORCID>0000-0002-4901-2980</ORCID><firstname>Perumal</firstname><surname>Nithiarasu</surname><name>Perumal Nithiarasu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-12-12</date><abstract/><type>Journal Article</type><journal>Computational Thermal Sciences: An International Journal</journal><volume>16</volume><journalNumber>3</journalNumber><paginationStart/><paginationEnd/><publisher>Begell House</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1940-2503</issnPrint><issnElectronic>1940-2554</issnElectronic><keywords>machine learning, transformer, transient problem, solution reconstruction, conduction, computational heat transfer, sparse measurements</keywords><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-03-01</publishedDate><doi>10.1615/computthermalscien.2023049936</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders>This work was part-funded by the United Kingdom Atomic Energy Authority (UKAEA) and the Engineering and Physical Sciences Research Council (EPSRC) under Grant Agreement Numbers EP/W006839/1, EP/T517987/1 and EP/R012091/1. We acknowledge the support of Supercomputing Wales and AccelerateAI projects, which is partfunded by the European Regional Development Fund (ERDF) via the Welsh Government for giving us access to NVIDIA A100 40GB GPUs for batch training.</funders><projectreference/><lastEdited>2024-04-10T12:29:36.5190018</lastEdited><Created>2023-12-12T09:14:50.2263418</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Biomedical Engineering</level></path><authors><author><firstname>Wiera</firstname><surname>Bielajewa</surname><order>1</order></author><author><firstname>Michelle</firstname><surname>Tindall</surname><order>2</order></author><author><firstname>Perumal</firstname><surname>Nithiarasu</surname><orcid>0000-0002-4901-2980</orcid><order>3</order></author></authors><documents><document><filename>Under embargo</filename><originalFilename>Under embargo</originalFilename><uploaded>2023-12-12T09:18:47.5855496</uploaded><type>Output</type><contentLength>34229833</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2025-03-01T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-04-10T12:29:36.5190018 v2 65266 2023-12-12 Comparative study of Transformer- and LSTM-based machine learning methods for transient thermal field reconstruction aeac9bf0d7f8e1377e32fdf5143713c5 Wiera Bielajewa Wiera Bielajewa true false 3b28bf59358fc2b9bd9a46897dbfc92d 0000-0002-4901-2980 Perumal Nithiarasu Perumal Nithiarasu true false 2023-12-12 Journal Article Computational Thermal Sciences: An International Journal 16 3 Begell House 1940-2503 1940-2554 machine learning, transformer, transient problem, solution reconstruction, conduction, computational heat transfer, sparse measurements 1 3 2024 2024-03-01 10.1615/computthermalscien.2023049936 COLLEGE NANME COLLEGE CODE Swansea University This work was part-funded by the United Kingdom Atomic Energy Authority (UKAEA) and the Engineering and Physical Sciences Research Council (EPSRC) under Grant Agreement Numbers EP/W006839/1, EP/T517987/1 and EP/R012091/1. We acknowledge the support of Supercomputing Wales and AccelerateAI projects, which is partfunded by the European Regional Development Fund (ERDF) via the Welsh Government for giving us access to NVIDIA A100 40GB GPUs for batch training. 2024-04-10T12:29:36.5190018 2023-12-12T09:14:50.2263418 Faculty of Science and Engineering School of Engineering and Applied Sciences - Biomedical Engineering Wiera Bielajewa 1 Michelle Tindall 2 Perumal Nithiarasu 0000-0002-4901-2980 3 Under embargo Under embargo 2023-12-12T09:18:47.5855496 Output 34229833 application/pdf Accepted Manuscript true 2025-03-01T00:00:00.0000000 true eng |
title |
Comparative study of Transformer- and LSTM-based machine learning methods for transient thermal field reconstruction |
spellingShingle |
Comparative study of Transformer- and LSTM-based machine learning methods for transient thermal field reconstruction Wiera Bielajewa Perumal Nithiarasu |
title_short |
Comparative study of Transformer- and LSTM-based machine learning methods for transient thermal field reconstruction |
title_full |
Comparative study of Transformer- and LSTM-based machine learning methods for transient thermal field reconstruction |
title_fullStr |
Comparative study of Transformer- and LSTM-based machine learning methods for transient thermal field reconstruction |
title_full_unstemmed |
Comparative study of Transformer- and LSTM-based machine learning methods for transient thermal field reconstruction |
title_sort |
Comparative study of Transformer- and LSTM-based machine learning methods for transient thermal field reconstruction |
author_id_str_mv |
aeac9bf0d7f8e1377e32fdf5143713c5 3b28bf59358fc2b9bd9a46897dbfc92d |
author_id_fullname_str_mv |
aeac9bf0d7f8e1377e32fdf5143713c5_***_Wiera Bielajewa 3b28bf59358fc2b9bd9a46897dbfc92d_***_Perumal Nithiarasu |
author |
Wiera Bielajewa Perumal Nithiarasu |
author2 |
Wiera Bielajewa Michelle Tindall Perumal Nithiarasu |
format |
Journal article |
container_title |
Computational Thermal Sciences: An International Journal |
container_volume |
16 |
container_issue |
3 |
publishDate |
2024 |
institution |
Swansea University |
issn |
1940-2503 1940-2554 |
doi_str_mv |
10.1615/computthermalscien.2023049936 |
publisher |
Begell House |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Biomedical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Biomedical Engineering |
document_store_str |
0 |
active_str |
0 |
published_date |
2024-03-01T14:27:55Z |
_version_ |
1822050196838678528 |
score |
11.048259 |