Conference Paper/Proceeding/Abstract 129 views 11 downloads
Segmenting Breast Ultrasound Scans Using a Generative Adversarial Network Embedding U-Net
Abraham Etinosa Enobun,
Uche Henry Anakwenze,
Aboozar Taherkhani ,
Zacharias Anastassi ,
Fabio Caraffini ,
Hassan Eshkiki
Lecture Notes in Computer Science, Volume: 14976, Pages: 149 - 159
Swansea University Authors: Fabio Caraffini , Hassan Eshkiki
-
PDF | Accepted Manuscript
Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).
Download (528.79KB)
DOI (Published version): 10.1007/978-3-031-67285-9_11
Abstract
Segmenting Breast Ultrasound Scans Using a Generative Adversarial Network Embedding U-Net
Published in: | Lecture Notes in Computer Science |
---|---|
ISBN: | 9783031672842 9783031672859 |
ISSN: | 0302-9743 1611-3349 |
Published: |
Cham
Springer Nature Switzerland
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa67384 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2024-08-15T13:00:46Z |
---|---|
last_indexed |
2024-08-15T13:00:46Z |
id |
cronfa67384 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>67384</id><entry>2024-08-15</entry><title>Segmenting Breast Ultrasound Scans Using a Generative Adversarial Network Embedding U-Net</title><swanseaauthors><author><sid>d0b8d4e63d512d4d67a02a23dd20dfdb</sid><ORCID>0000-0001-9199-7368</ORCID><firstname>Fabio</firstname><surname>Caraffini</surname><name>Fabio Caraffini</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c9972b26a83de11ffe211070f26fe16b</sid><ORCID>0000-0001-7795-453X</ORCID><firstname>Hassan</firstname><surname>Eshkiki</surname><name>Hassan Eshkiki</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-08-15</date><deptcode>MACS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>Lecture Notes in Computer Science</journal><volume>14976</volume><journalNumber/><paginationStart>149</paginationStart><paginationEnd>159</paginationEnd><publisher>Springer Nature Switzerland</publisher><placeOfPublication>Cham</placeOfPublication><isbnPrint>9783031672842</isbnPrint><isbnElectronic>9783031672859</isbnElectronic><issnPrint>0302-9743</issnPrint><issnElectronic>1611-3349</issnElectronic><keywords>generative adversarial network; U-Net; dilated convolution; breast ultrasound</keywords><publishedDay>15</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-08-15</publishedDate><doi>10.1007/978-3-031-67285-9_11</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders/><projectreference/><lastEdited>2024-10-02T14:05:43.8904620</lastEdited><Created>2024-08-15T13:59:14.0698495</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Abraham Etinosa</firstname><surname>Enobun</surname><order>1</order></author><author><firstname>Uche Henry</firstname><surname>Anakwenze</surname><order>2</order></author><author><firstname>Aboozar</firstname><surname>Taherkhani</surname><orcid>0000-0002-3627-6362</orcid><order>3</order></author><author><firstname>Zacharias</firstname><surname>Anastassi</surname><orcid>0000-0001-9190-2816</orcid><order>4</order></author><author><firstname>Fabio</firstname><surname>Caraffini</surname><orcid>0000-0001-9199-7368</orcid><order>5</order></author><author><firstname>Hassan</firstname><surname>Eshkiki</surname><orcid>0000-0001-7795-453X</orcid><order>6</order></author></authors><documents><document><filename>67384__31498__92218e1a464347a796f1dd093433930b.pdf</filename><originalFilename>BUS_Segmentation.pdf</originalFilename><uploaded>2024-10-01T15:54:26.1104845</uploaded><type>Output</type><contentLength>541477</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 67384 2024-08-15 Segmenting Breast Ultrasound Scans Using a Generative Adversarial Network Embedding U-Net d0b8d4e63d512d4d67a02a23dd20dfdb 0000-0001-9199-7368 Fabio Caraffini Fabio Caraffini true false c9972b26a83de11ffe211070f26fe16b 0000-0001-7795-453X Hassan Eshkiki Hassan Eshkiki true false 2024-08-15 MACS Conference Paper/Proceeding/Abstract Lecture Notes in Computer Science 14976 149 159 Springer Nature Switzerland Cham 9783031672842 9783031672859 0302-9743 1611-3349 generative adversarial network; U-Net; dilated convolution; breast ultrasound 15 8 2024 2024-08-15 10.1007/978-3-031-67285-9_11 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Not Required 2024-10-02T14:05:43.8904620 2024-08-15T13:59:14.0698495 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Abraham Etinosa Enobun 1 Uche Henry Anakwenze 2 Aboozar Taherkhani 0000-0002-3627-6362 3 Zacharias Anastassi 0000-0001-9190-2816 4 Fabio Caraffini 0000-0001-9199-7368 5 Hassan Eshkiki 0000-0001-7795-453X 6 67384__31498__92218e1a464347a796f1dd093433930b.pdf BUS_Segmentation.pdf 2024-10-01T15:54:26.1104845 Output 541477 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en |
title |
Segmenting Breast Ultrasound Scans Using a Generative Adversarial Network Embedding U-Net |
spellingShingle |
Segmenting Breast Ultrasound Scans Using a Generative Adversarial Network Embedding U-Net Fabio Caraffini Hassan Eshkiki |
title_short |
Segmenting Breast Ultrasound Scans Using a Generative Adversarial Network Embedding U-Net |
title_full |
Segmenting Breast Ultrasound Scans Using a Generative Adversarial Network Embedding U-Net |
title_fullStr |
Segmenting Breast Ultrasound Scans Using a Generative Adversarial Network Embedding U-Net |
title_full_unstemmed |
Segmenting Breast Ultrasound Scans Using a Generative Adversarial Network Embedding U-Net |
title_sort |
Segmenting Breast Ultrasound Scans Using a Generative Adversarial Network Embedding U-Net |
author_id_str_mv |
d0b8d4e63d512d4d67a02a23dd20dfdb c9972b26a83de11ffe211070f26fe16b |
author_id_fullname_str_mv |
d0b8d4e63d512d4d67a02a23dd20dfdb_***_Fabio Caraffini c9972b26a83de11ffe211070f26fe16b_***_Hassan Eshkiki |
author |
Fabio Caraffini Hassan Eshkiki |
author2 |
Abraham Etinosa Enobun Uche Henry Anakwenze Aboozar Taherkhani Zacharias Anastassi Fabio Caraffini Hassan Eshkiki |
format |
Conference Paper/Proceeding/Abstract |
container_title |
Lecture Notes in Computer Science |
container_volume |
14976 |
container_start_page |
149 |
publishDate |
2024 |
institution |
Swansea University |
isbn |
9783031672842 9783031672859 |
issn |
0302-9743 1611-3349 |
doi_str_mv |
10.1007/978-3-031-67285-9_11 |
publisher |
Springer Nature Switzerland |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
published_date |
2024-08-15T14:05:42Z |
_version_ |
1811807566808743936 |
score |
11.035634 |