No Cover Image

Journal article 101 views 36 downloads

A rapid-response soft end effector inspired by the hummingbird beak

Jiajia Shen Orcid Logo, Martin Garrad, Qicheng Zhang, Vico Chun Hei Wong, Alberto Pirrera Orcid Logo, Rainer M. J. Groh Orcid Logo

Journal of the Royal Society Interface, Volume: 21, Issue: 218

Swansea University Author: Qicheng Zhang

  • rsif.2024.0148.pdf

    PDF | Version of Record

    © 2024 The Author(s). Published by the Royal Society under the terms of the Creative Commons Attribution License (CC-BY).

    Download (1.41MB)

Check full text

DOI (Published version): 10.1098/rsif.2024.0148

Abstract

Biology is a wellspring of inspiration in engineering design. This paper delves into the application of elastic instabilities—commonly used in biological systems to facilitate swift movement—as a power-amplification mechanism for soft robots. Specifically, inspired by the nonlinear mechanics of the...

Full description

Published in: Journal of the Royal Society Interface
ISSN: 1742-5689 1742-5662
Published: The Royal Society 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa67554
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Biology is a wellspring of inspiration in engineering design. This paper delves into the application of elastic instabilities—commonly used in biological systems to facilitate swift movement—as a power-amplification mechanism for soft robots. Specifically, inspired by the nonlinear mechanics of the hummingbird beak—and shedding further light on it—we design, build and test a novel, rapid-response, soft end effector. The hummingbird beak embodies the capacity for swift movement, achieving closure in less than 10 ms . Previous work demonstrated that rapid movement is achieved through snap-through deformations, induced by muscular actuation of the beak’s root. Using nonlinear finite element simulations coupled with continuation algorithms, we unveil a representative portion of the equilibrium manifold of the beak-inspired structure. The exploration involves the application of a sequence of rotations as exerted by the hummingbird muscles. Specific emphasis is placed on pinpointing and tailoring the position along the manifold of the saddle-node bifurcation at which the onset of elastic instability triggers dynamic snap-through. We show the critical importance of the intermediate rotation input in the sequence, as it results in the accumulation of elastic energy that is then explosively released as kinetic energy upon snap-through. Informed by our numerical studies, we conduct experimental testing on a prototype end effector fabricated using a compliant material (thermoplastic polyurethane). The experimental results support the trends observed in the numerical simulations and demonstrate the effectiveness of the bio-inspired design. Specifically, we measure the energy transferred by the soft end effector to a pendulum, varying the input levels in the sequence of prescribed rotations. Additionally, we demonstrate a potential robotic application in scenarios demanding explosive action. From a mechanics perspective, our work sheds light on how pre-stress fields can enable swift movement in soft robotic systems with the potential to facilitate high input-to-output energy efficiency.
Keywords: Functional morphology, snap-through instability, elastic tailoring, programmability, energy amplification, well-behaved nonlinear structures
College: Faculty of Science and Engineering
Funders: V.C.H.W. was funded by the Faculty Postdoc Research Prize awarded to J.S. at the University of Bristol. J.S. was funded by the Leverhulme Trust through a Philip Leverhulme Prize awarded to R.M.J.G. J.S. was also funded by a Research Fellowship from Exeter Technologies Group at University of Exeter. R.M.J.G. was also funded by the Royal Academy of Engineering under the Research Fellowship scheme [RFz201718z17178].
Issue: 218