Journal article 101 views 36 downloads
A rapid-response soft end effector inspired by the hummingbird beak
Journal of the Royal Society Interface, Volume: 21, Issue: 218
Swansea University Author: Qicheng Zhang
-
PDF | Version of Record
© 2024 The Author(s). Published by the Royal Society under the terms of the Creative Commons Attribution License (CC-BY).
Download (1.41MB)
DOI (Published version): 10.1098/rsif.2024.0148
Abstract
Biology is a wellspring of inspiration in engineering design. This paper delves into the application of elastic instabilities—commonly used in biological systems to facilitate swift movement—as a power-amplification mechanism for soft robots. Specifically, inspired by the nonlinear mechanics of the...
Published in: | Journal of the Royal Society Interface |
---|---|
ISSN: | 1742-5689 1742-5662 |
Published: |
The Royal Society
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa67554 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2024-09-04T11:25:43Z |
---|---|
last_indexed |
2024-09-04T11:25:43Z |
id |
cronfa67554 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>67554</id><entry>2024-09-04</entry><title>A rapid-response soft end effector inspired by the hummingbird beak</title><swanseaauthors><author><sid>8ff09bdb2a479fcc8d203f099b148f69</sid><firstname>Qicheng</firstname><surname>Zhang</surname><name>Qicheng Zhang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-09-04</date><abstract>Biology is a wellspring of inspiration in engineering design. This paper delves into the application of elastic instabilities—commonly used in biological systems to facilitate swift movement—as a power-amplification mechanism for soft robots. Specifically, inspired by the nonlinear mechanics of the hummingbird beak—and shedding further light on it—we design, build and test a novel, rapid-response, soft end effector. The hummingbird beak embodies the capacity for swift movement, achieving closure in less than 10 ms . Previous work demonstrated that rapid movement is achieved through snap-through deformations, induced by muscular actuation of the beak’s root. Using nonlinear finite element simulations coupled with continuation algorithms, we unveil a representative portion of the equilibrium manifold of the beak-inspired structure. The exploration involves the application of a sequence of rotations as exerted by the hummingbird muscles. Specific emphasis is placed on pinpointing and tailoring the position along the manifold of the saddle-node bifurcation at which the onset of elastic instability triggers dynamic snap-through. We show the critical importance of the intermediate rotation input in the sequence, as it results in the accumulation of elastic energy that is then explosively released as kinetic energy upon snap-through. Informed by our numerical studies, we conduct experimental testing on a prototype end effector fabricated using a compliant material (thermoplastic polyurethane). The experimental results support the trends observed in the numerical simulations and demonstrate the effectiveness of the bio-inspired design. Specifically, we measure the energy transferred by the soft end effector to a pendulum, varying the input levels in the sequence of prescribed rotations. Additionally, we demonstrate a potential robotic application in scenarios demanding explosive action. From a mechanics perspective, our work sheds light on how pre-stress fields can enable swift movement in soft robotic systems with the potential to facilitate high input-to-output energy efficiency.</abstract><type>Journal Article</type><journal>Journal of the Royal Society Interface</journal><volume>21</volume><journalNumber>218</journalNumber><paginationStart/><paginationEnd/><publisher>The Royal Society</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1742-5689</issnPrint><issnElectronic>1742-5662</issnElectronic><keywords>Functional morphology, snap-through instability, elastic tailoring, programmability, energy amplification, well-behaved nonlinear structures</keywords><publishedDay>4</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-09-04</publishedDate><doi>10.1098/rsif.2024.0148</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>V.C.H.W. was funded by the Faculty Postdoc Research Prize awarded to J.S. at the University of Bristol. J.S. was funded by the Leverhulme Trust through a Philip Leverhulme Prize awarded to R.M.J.G. J.S. was also funded by a Research Fellowship from Exeter Technologies Group at University of Exeter. R.M.J.G. was also funded by the Royal Academy of Engineering under the Research Fellowship scheme [RFz201718z17178].</funders><projectreference/><lastEdited>2024-09-04T12:27:10.2858820</lastEdited><Created>2024-09-04T11:45:47.2755086</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Aerospace Engineering</level></path><authors><author><firstname>Jiajia</firstname><surname>Shen</surname><orcid>0000-0003-2763-1147</orcid><order>1</order></author><author><firstname>Martin</firstname><surname>Garrad</surname><order>2</order></author><author><firstname>Qicheng</firstname><surname>Zhang</surname><order>3</order></author><author><firstname>Vico Chun Hei</firstname><surname>Wong</surname><order>4</order></author><author><firstname>Alberto</firstname><surname>Pirrera</surname><orcid>0000-0003-3867-3916</orcid><order>5</order></author><author><firstname>Rainer M. J.</firstname><surname>Groh</surname><orcid>0000-0001-5031-7493</orcid><order>6</order></author></authors><documents><document><filename>67554__31256__351c923fe30f4054a65463e144a2856e.pdf</filename><originalFilename>rsif.2024.0148.pdf</originalFilename><uploaded>2024-09-04T11:45:47.0553272</uploaded><type>Output</type><contentLength>1475399</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2024 The Author(s). Published by the Royal Society under the terms of the Creative Commons Attribution License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 67554 2024-09-04 A rapid-response soft end effector inspired by the hummingbird beak 8ff09bdb2a479fcc8d203f099b148f69 Qicheng Zhang Qicheng Zhang true false 2024-09-04 Biology is a wellspring of inspiration in engineering design. This paper delves into the application of elastic instabilities—commonly used in biological systems to facilitate swift movement—as a power-amplification mechanism for soft robots. Specifically, inspired by the nonlinear mechanics of the hummingbird beak—and shedding further light on it—we design, build and test a novel, rapid-response, soft end effector. The hummingbird beak embodies the capacity for swift movement, achieving closure in less than 10 ms . Previous work demonstrated that rapid movement is achieved through snap-through deformations, induced by muscular actuation of the beak’s root. Using nonlinear finite element simulations coupled with continuation algorithms, we unveil a representative portion of the equilibrium manifold of the beak-inspired structure. The exploration involves the application of a sequence of rotations as exerted by the hummingbird muscles. Specific emphasis is placed on pinpointing and tailoring the position along the manifold of the saddle-node bifurcation at which the onset of elastic instability triggers dynamic snap-through. We show the critical importance of the intermediate rotation input in the sequence, as it results in the accumulation of elastic energy that is then explosively released as kinetic energy upon snap-through. Informed by our numerical studies, we conduct experimental testing on a prototype end effector fabricated using a compliant material (thermoplastic polyurethane). The experimental results support the trends observed in the numerical simulations and demonstrate the effectiveness of the bio-inspired design. Specifically, we measure the energy transferred by the soft end effector to a pendulum, varying the input levels in the sequence of prescribed rotations. Additionally, we demonstrate a potential robotic application in scenarios demanding explosive action. From a mechanics perspective, our work sheds light on how pre-stress fields can enable swift movement in soft robotic systems with the potential to facilitate high input-to-output energy efficiency. Journal Article Journal of the Royal Society Interface 21 218 The Royal Society 1742-5689 1742-5662 Functional morphology, snap-through instability, elastic tailoring, programmability, energy amplification, well-behaved nonlinear structures 4 9 2024 2024-09-04 10.1098/rsif.2024.0148 COLLEGE NANME COLLEGE CODE Swansea University Another institution paid the OA fee V.C.H.W. was funded by the Faculty Postdoc Research Prize awarded to J.S. at the University of Bristol. J.S. was funded by the Leverhulme Trust through a Philip Leverhulme Prize awarded to R.M.J.G. J.S. was also funded by a Research Fellowship from Exeter Technologies Group at University of Exeter. R.M.J.G. was also funded by the Royal Academy of Engineering under the Research Fellowship scheme [RFz201718z17178]. 2024-09-04T12:27:10.2858820 2024-09-04T11:45:47.2755086 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Aerospace Engineering Jiajia Shen 0000-0003-2763-1147 1 Martin Garrad 2 Qicheng Zhang 3 Vico Chun Hei Wong 4 Alberto Pirrera 0000-0003-3867-3916 5 Rainer M. J. Groh 0000-0001-5031-7493 6 67554__31256__351c923fe30f4054a65463e144a2856e.pdf rsif.2024.0148.pdf 2024-09-04T11:45:47.0553272 Output 1475399 application/pdf Version of Record true © 2024 The Author(s). Published by the Royal Society under the terms of the Creative Commons Attribution License (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/ |
title |
A rapid-response soft end effector inspired by the hummingbird beak |
spellingShingle |
A rapid-response soft end effector inspired by the hummingbird beak Qicheng Zhang |
title_short |
A rapid-response soft end effector inspired by the hummingbird beak |
title_full |
A rapid-response soft end effector inspired by the hummingbird beak |
title_fullStr |
A rapid-response soft end effector inspired by the hummingbird beak |
title_full_unstemmed |
A rapid-response soft end effector inspired by the hummingbird beak |
title_sort |
A rapid-response soft end effector inspired by the hummingbird beak |
author_id_str_mv |
8ff09bdb2a479fcc8d203f099b148f69 |
author_id_fullname_str_mv |
8ff09bdb2a479fcc8d203f099b148f69_***_Qicheng Zhang |
author |
Qicheng Zhang |
author2 |
Jiajia Shen Martin Garrad Qicheng Zhang Vico Chun Hei Wong Alberto Pirrera Rainer M. J. Groh |
format |
Journal article |
container_title |
Journal of the Royal Society Interface |
container_volume |
21 |
container_issue |
218 |
publishDate |
2024 |
institution |
Swansea University |
issn |
1742-5689 1742-5662 |
doi_str_mv |
10.1098/rsif.2024.0148 |
publisher |
The Royal Society |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Aerospace Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Aerospace Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Biology is a wellspring of inspiration in engineering design. This paper delves into the application of elastic instabilities—commonly used in biological systems to facilitate swift movement—as a power-amplification mechanism for soft robots. Specifically, inspired by the nonlinear mechanics of the hummingbird beak—and shedding further light on it—we design, build and test a novel, rapid-response, soft end effector. The hummingbird beak embodies the capacity for swift movement, achieving closure in less than 10 ms . Previous work demonstrated that rapid movement is achieved through snap-through deformations, induced by muscular actuation of the beak’s root. Using nonlinear finite element simulations coupled with continuation algorithms, we unveil a representative portion of the equilibrium manifold of the beak-inspired structure. The exploration involves the application of a sequence of rotations as exerted by the hummingbird muscles. Specific emphasis is placed on pinpointing and tailoring the position along the manifold of the saddle-node bifurcation at which the onset of elastic instability triggers dynamic snap-through. We show the critical importance of the intermediate rotation input in the sequence, as it results in the accumulation of elastic energy that is then explosively released as kinetic energy upon snap-through. Informed by our numerical studies, we conduct experimental testing on a prototype end effector fabricated using a compliant material (thermoplastic polyurethane). The experimental results support the trends observed in the numerical simulations and demonstrate the effectiveness of the bio-inspired design. Specifically, we measure the energy transferred by the soft end effector to a pendulum, varying the input levels in the sequence of prescribed rotations. Additionally, we demonstrate a potential robotic application in scenarios demanding explosive action. From a mechanics perspective, our work sheds light on how pre-stress fields can enable swift movement in soft robotic systems with the potential to facilitate high input-to-output energy efficiency. |
published_date |
2024-09-04T12:27:09Z |
_version_ |
1809264651292114944 |
score |
11.035655 |