Journal article 87 views 32 downloads
A Latitudinal Cline in the Taxonomic Structure of Eelgrass Epifaunal Communities is Associated With Plant Genetic Diversity
Global Ecology and Biogeography
Swansea University Authors: John Griffin , Richard Unsworth
-
PDF | Version of Record
© 2024 The Author(s). This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License (CC-BY-NC 4.0).
Download (3.1MB)
DOI (Published version): 10.1111/geb.13918
Abstract
Aim: Biogenic structural complexity increases mobile animal richness and abundance at local, regional and global scales, yet animal taxa vary in their response to complexity. When these taxa also vary functionally, habitat structures favouring certain taxa may have consequences for ecosystem functio...
Published in: | Global Ecology and Biogeography |
---|---|
ISSN: | 1466-822X 1466-8238 |
Published: |
Wiley
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa67867 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
Aim: Biogenic structural complexity increases mobile animal richness and abundance at local, regional and global scales, yet animal taxa vary in their response to complexity. When these taxa also vary functionally, habitat structures favouring certain taxa may have consequences for ecosystem function. We characterised global patterns of epifaunal invertebrates in eelgrass (Zostera marina) beds that varied in structural and genetic composition. Location: North America, Europe and Asia. Time Period: 2014. Major Taxa Studied: Peracarid crustaceans and gastropod molluscs. Methods: We sampled epifaunal invertebrate communities in 49 eelgrass beds across 37° latitude in two ocean basins concurrently with measurements of eelgrass genetic diversity, structural complexity and other abiotic and biotic environmental variables. We examined how species richness, abundance and community composition varied with latitude and environmental predictors using a random forest approach. We also examined how functional trait composition varied along with community structure. Results: Total species richness decreased with latitude, but this was accompanied by a taxonomic shift in dominance from peracarid crustaceans to gastropods, which exhibited different sets of functional traits. Greater eelgrass genetic diversity was strongly correlated with both richness and abundance of peracarids, but less so for gastropods. Main Conclusions: Our results add to a growing body of literature that suggests genetic variation in plant traits influences their associated faunal assemblages via habitat structure. Because peracarids and gastropods exhibited distinct functional traits, our results suggest a tentative indirect link between broad‐scale variation in plant genetic diversity and ecosystem function. |
---|---|
Keywords: |
Amphipod, eelgrass, epifauna, gastropod, genetic diversity, isopod, latitudinal gradients, structural complexity |
College: |
Faculty of Science and Engineering |
Funders: |
This research was funded by National Science Foundation grants to JED, JJS and KAH (NSF-OCE 1336206, OCE 1336905 and OCE 1336741). CB was funded by the Åbo Akademi University Foundation. JE was funded by project PlantFish (Formas grant 2013-1074). AE was supported by CCMAR/ID/16/2018, within CEECINST/00114/2018 and UID/Multi/04326/2019, financed by Fundação para a Ciência e a Tecnologia (FCT). This manuscript was prepared as a chapter for CPG's doctoral dissertation. This is contribution 145 from the Smithsonian's MarineGEO and Tennenbaum Marine Observatories Network. |