No Cover Image

Journal article 92 views

Investigating thermal transport across the AlN/diamond interface via the machine learning potential

Zhanpeng Sun, Xiang Sun, Zijun Qi, Qijun Wang, Rui Li, Lijie Li Orcid Logo, Gai Wu, Wei Shen, Sheng Liu

Diamond and Related Materials, Volume: 147, Start page: 111303

Swansea University Author: Lijie Li Orcid Logo

Full text not available from this repository: check for access using links below.

Published in: Diamond and Related Materials
ISSN: 0925-9635
Published: Elsevier BV 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa68006
first_indexed 2024-10-17T11:42:19Z
last_indexed 2025-01-09T20:32:21Z
id cronfa68006
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2024-12-19T15:33:30.1861423</datestamp><bib-version>v2</bib-version><id>68006</id><entry>2024-10-17</entry><title>Investigating thermal transport across the AlN/diamond interface via the machine learning potential</title><swanseaauthors><author><sid>ed2c658b77679a28e4c1dcf95af06bd6</sid><ORCID>0000-0003-4630-7692</ORCID><firstname>Lijie</firstname><surname>Li</surname><name>Lijie Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-10-17</date><deptcode>ACEM</deptcode><abstract/><type>Journal Article</type><journal>Diamond and Related Materials</journal><volume>147</volume><journalNumber/><paginationStart>111303</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0925-9635</issnPrint><issnElectronic/><keywords>Thermal boundary resistance; AlN/diamond interface; Molecular dynamics; Neuroevolution potential</keywords><publishedDay>1</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-08-01</publishedDate><doi>10.1016/j.diamond.2024.111303</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work was funded by the National Natural Science Foundation of China (Grant Nos. 62004141, 52202045), the Knowledge Innovation Program of Wuhan-Shuguang (Grant Nos. 2023010201020243, 2023010201020255), the Fundamental Research Funds for the Central Universities (Grant Nos. 2042023kf0112, 2042022kf1028), the Major Program (JD) of Hubei Province (Grant No. 2023BAA009), the Hubei Natural Science Foundation (Grant No. 2022CFB606), the Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration (Wuhan University) (Grant Nos. EMPI2024014, EMPI2024021, EMPI2023027), and the China Scholarship Council (Grant No. 202206275005). The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.</funders><projectreference/><lastEdited>2024-12-19T15:33:30.1861423</lastEdited><Created>2024-10-17T12:27:20.9585759</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Zhanpeng</firstname><surname>Sun</surname><order>1</order></author><author><firstname>Xiang</firstname><surname>Sun</surname><order>2</order></author><author><firstname>Zijun</firstname><surname>Qi</surname><order>3</order></author><author><firstname>Qijun</firstname><surname>Wang</surname><order>4</order></author><author><firstname>Rui</firstname><surname>Li</surname><order>5</order></author><author><firstname>Lijie</firstname><surname>Li</surname><orcid>0000-0003-4630-7692</orcid><order>6</order></author><author><firstname>Gai</firstname><surname>Wu</surname><order>7</order></author><author><firstname>Wei</firstname><surname>Shen</surname><order>8</order></author><author><firstname>Sheng</firstname><surname>Liu</surname><order>9</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2024-12-19T15:33:30.1861423 v2 68006 2024-10-17 Investigating thermal transport across the AlN/diamond interface via the machine learning potential ed2c658b77679a28e4c1dcf95af06bd6 0000-0003-4630-7692 Lijie Li Lijie Li true false 2024-10-17 ACEM Journal Article Diamond and Related Materials 147 111303 Elsevier BV 0925-9635 Thermal boundary resistance; AlN/diamond interface; Molecular dynamics; Neuroevolution potential 1 8 2024 2024-08-01 10.1016/j.diamond.2024.111303 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University This work was funded by the National Natural Science Foundation of China (Grant Nos. 62004141, 52202045), the Knowledge Innovation Program of Wuhan-Shuguang (Grant Nos. 2023010201020243, 2023010201020255), the Fundamental Research Funds for the Central Universities (Grant Nos. 2042023kf0112, 2042022kf1028), the Major Program (JD) of Hubei Province (Grant No. 2023BAA009), the Hubei Natural Science Foundation (Grant No. 2022CFB606), the Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration (Wuhan University) (Grant Nos. EMPI2024014, EMPI2024021, EMPI2023027), and the China Scholarship Council (Grant No. 202206275005). The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University. 2024-12-19T15:33:30.1861423 2024-10-17T12:27:20.9585759 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Zhanpeng Sun 1 Xiang Sun 2 Zijun Qi 3 Qijun Wang 4 Rui Li 5 Lijie Li 0000-0003-4630-7692 6 Gai Wu 7 Wei Shen 8 Sheng Liu 9
title Investigating thermal transport across the AlN/diamond interface via the machine learning potential
spellingShingle Investigating thermal transport across the AlN/diamond interface via the machine learning potential
Lijie Li
title_short Investigating thermal transport across the AlN/diamond interface via the machine learning potential
title_full Investigating thermal transport across the AlN/diamond interface via the machine learning potential
title_fullStr Investigating thermal transport across the AlN/diamond interface via the machine learning potential
title_full_unstemmed Investigating thermal transport across the AlN/diamond interface via the machine learning potential
title_sort Investigating thermal transport across the AlN/diamond interface via the machine learning potential
author_id_str_mv ed2c658b77679a28e4c1dcf95af06bd6
author_id_fullname_str_mv ed2c658b77679a28e4c1dcf95af06bd6_***_Lijie Li
author Lijie Li
author2 Zhanpeng Sun
Xiang Sun
Zijun Qi
Qijun Wang
Rui Li
Lijie Li
Gai Wu
Wei Shen
Sheng Liu
format Journal article
container_title Diamond and Related Materials
container_volume 147
container_start_page 111303
publishDate 2024
institution Swansea University
issn 0925-9635
doi_str_mv 10.1016/j.diamond.2024.111303
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering
document_store_str 0
active_str 0
published_date 2024-08-01T14:36:43Z
_version_ 1822413137790369792
score 11.414753