Journal article 52 views
Interfacial Optimization for AlN/Diamond Heterostructures via Machine Learning Potential Molecular Dynamics Investigation of the Mechanical Properties
Zijun Qi,
Xiang Sun,
Zhanpeng Sun,
Qijun Wang,
Dongliang Zhang,
Kang Liang,
Rui Li,
Diwei Zou,
Lijie Li ,
Gai Wu ,
Wei Shen,
Sheng Liu
ACS Applied Materials & Interfaces, Volume: 16, Issue: 21, Pages: 27998 - 28007
Swansea University Author: Lijie Li
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1021/acsami.4c06055
Abstract
Interfacial Optimization for AlN/Diamond Heterostructures via Machine Learning Potential Molecular Dynamics Investigation of the Mechanical Properties
Published in: | ACS Applied Materials & Interfaces |
---|---|
ISSN: | 1944-8244 1944-8252 |
Published: |
American Chemical Society (ACS)
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa68007 |
first_indexed |
2024-10-17T11:37:30Z |
---|---|
last_indexed |
2025-01-09T20:32:22Z |
id |
cronfa68007 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-12-19T15:38:28.6836808</datestamp><bib-version>v2</bib-version><id>68007</id><entry>2024-10-17</entry><title>Interfacial Optimization for AlN/Diamond Heterostructures via Machine Learning Potential Molecular Dynamics Investigation of the Mechanical Properties</title><swanseaauthors><author><sid>ed2c658b77679a28e4c1dcf95af06bd6</sid><ORCID>0000-0003-4630-7692</ORCID><firstname>Lijie</firstname><surname>Li</surname><name>Lijie Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-10-17</date><deptcode>ACEM</deptcode><abstract/><type>Journal Article</type><journal>ACS Applied Materials &amp; Interfaces</journal><volume>16</volume><journalNumber>21</journalNumber><paginationStart>27998</paginationStart><paginationEnd>28007</paginationEnd><publisher>American Chemical Society (ACS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1944-8244</issnPrint><issnElectronic>1944-8252</issnElectronic><keywords>AlN/diamond heterostructure; neuroevolution machine learning potential; molecular dynamics; interfacial mechanical property; interfacial structure optimization</keywords><publishedDay>29</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-05-29</publishedDate><doi>10.1021/acsami.4c06055</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work was funded by the National Natural Science Foundation of China (Grant Nos. 52202045 and 62004141), the Knowledge Innovation Program of Wuhan-Shuguang (Grant Nos. 2023010201020243 and 2023010201020255), the Fundamental Research Funds for the Central Universities (Grant Nos. 2042023kf0112 and 2042022kf1028), the Major Program (JD) of Hubei Province (Grant No. 2023BAA009), the Hubei Natural Science Foundation (Grant No. 2022CFB606), the Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration (Wuhan University) (Grant Nos. EMPI2024014 and EMPI2023027), and the China Scholarship Council (Grant No. 202206275005). The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.</funders><projectreference/><lastEdited>2024-12-19T15:38:28.6836808</lastEdited><Created>2024-10-17T12:27:43.5075557</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Zijun</firstname><surname>Qi</surname><order>1</order></author><author><firstname>Xiang</firstname><surname>Sun</surname><order>2</order></author><author><firstname>Zhanpeng</firstname><surname>Sun</surname><order>3</order></author><author><firstname>Qijun</firstname><surname>Wang</surname><order>4</order></author><author><firstname>Dongliang</firstname><surname>Zhang</surname><order>5</order></author><author><firstname>Kang</firstname><surname>Liang</surname><order>6</order></author><author><firstname>Rui</firstname><surname>Li</surname><order>7</order></author><author><firstname>Diwei</firstname><surname>Zou</surname><order>8</order></author><author><firstname>Lijie</firstname><surname>Li</surname><orcid>0000-0003-4630-7692</orcid><order>9</order></author><author><firstname>Gai</firstname><surname>Wu</surname><orcid>0000-0002-9726-6328</orcid><order>10</order></author><author><firstname>Wei</firstname><surname>Shen</surname><order>11</order></author><author><firstname>Sheng</firstname><surname>Liu</surname><orcid>0000-0001-6033-078x</orcid><order>12</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2024-12-19T15:38:28.6836808 v2 68007 2024-10-17 Interfacial Optimization for AlN/Diamond Heterostructures via Machine Learning Potential Molecular Dynamics Investigation of the Mechanical Properties ed2c658b77679a28e4c1dcf95af06bd6 0000-0003-4630-7692 Lijie Li Lijie Li true false 2024-10-17 ACEM Journal Article ACS Applied Materials & Interfaces 16 21 27998 28007 American Chemical Society (ACS) 1944-8244 1944-8252 AlN/diamond heterostructure; neuroevolution machine learning potential; molecular dynamics; interfacial mechanical property; interfacial structure optimization 29 5 2024 2024-05-29 10.1021/acsami.4c06055 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University This work was funded by the National Natural Science Foundation of China (Grant Nos. 52202045 and 62004141), the Knowledge Innovation Program of Wuhan-Shuguang (Grant Nos. 2023010201020243 and 2023010201020255), the Fundamental Research Funds for the Central Universities (Grant Nos. 2042023kf0112 and 2042022kf1028), the Major Program (JD) of Hubei Province (Grant No. 2023BAA009), the Hubei Natural Science Foundation (Grant No. 2022CFB606), the Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration (Wuhan University) (Grant Nos. EMPI2024014 and EMPI2023027), and the China Scholarship Council (Grant No. 202206275005). The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University. 2024-12-19T15:38:28.6836808 2024-10-17T12:27:43.5075557 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Zijun Qi 1 Xiang Sun 2 Zhanpeng Sun 3 Qijun Wang 4 Dongliang Zhang 5 Kang Liang 6 Rui Li 7 Diwei Zou 8 Lijie Li 0000-0003-4630-7692 9 Gai Wu 0000-0002-9726-6328 10 Wei Shen 11 Sheng Liu 0000-0001-6033-078x 12 |
title |
Interfacial Optimization for AlN/Diamond Heterostructures via Machine Learning Potential Molecular Dynamics Investigation of the Mechanical Properties |
spellingShingle |
Interfacial Optimization for AlN/Diamond Heterostructures via Machine Learning Potential Molecular Dynamics Investigation of the Mechanical Properties Lijie Li |
title_short |
Interfacial Optimization for AlN/Diamond Heterostructures via Machine Learning Potential Molecular Dynamics Investigation of the Mechanical Properties |
title_full |
Interfacial Optimization for AlN/Diamond Heterostructures via Machine Learning Potential Molecular Dynamics Investigation of the Mechanical Properties |
title_fullStr |
Interfacial Optimization for AlN/Diamond Heterostructures via Machine Learning Potential Molecular Dynamics Investigation of the Mechanical Properties |
title_full_unstemmed |
Interfacial Optimization for AlN/Diamond Heterostructures via Machine Learning Potential Molecular Dynamics Investigation of the Mechanical Properties |
title_sort |
Interfacial Optimization for AlN/Diamond Heterostructures via Machine Learning Potential Molecular Dynamics Investigation of the Mechanical Properties |
author_id_str_mv |
ed2c658b77679a28e4c1dcf95af06bd6 |
author_id_fullname_str_mv |
ed2c658b77679a28e4c1dcf95af06bd6_***_Lijie Li |
author |
Lijie Li |
author2 |
Zijun Qi Xiang Sun Zhanpeng Sun Qijun Wang Dongliang Zhang Kang Liang Rui Li Diwei Zou Lijie Li Gai Wu Wei Shen Sheng Liu |
format |
Journal article |
container_title |
ACS Applied Materials & Interfaces |
container_volume |
16 |
container_issue |
21 |
container_start_page |
27998 |
publishDate |
2024 |
institution |
Swansea University |
issn |
1944-8244 1944-8252 |
doi_str_mv |
10.1021/acsami.4c06055 |
publisher |
American Chemical Society (ACS) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering |
document_store_str |
0 |
active_str |
0 |
published_date |
2024-05-29T14:36:43Z |
_version_ |
1822413138014765056 |
score |
11.053652 |