Conference Paper/Proceeding/Abstract 25 views
SIGNN - Star Identification using Graph Neural Networks
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Feb. 2025
Swansea University Authors: Floyd Hepburn-Dickins, Mark Jones , Mike Edwards , Jay Morgan
Abstract
As a solution for the lost-in-space star identification problem we present Star Identification using Graph Neural Network (SIGNN), a novel approach using Graph Attention Networks. By representing the celestial sphere as a graph data structure, created from the ESA's Hipparcos catalogue, we are...
Published in: | Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Feb. 2025 |
---|---|
Published: |
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa68091 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2024-10-29T11:03:15Z |
---|---|
last_indexed |
2024-10-29T11:03:15Z |
id |
cronfa68091 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>68091</id><entry>2024-10-29</entry><title>SIGNN - Star Identification using Graph Neural Networks</title><swanseaauthors><author><sid>d8ecf05934e394b7bd020a2ce2c11d0c</sid><firstname>Floyd</firstname><surname>Hepburn-Dickins</surname><name>Floyd Hepburn-Dickins</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2e1030b6e14fc9debd5d5ae7cc335562</sid><ORCID>0000-0001-8991-1190</ORCID><firstname>Mark</firstname><surname>Jones</surname><name>Mark Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>684864a1ce01c3d774e83ed55e41770e</sid><ORCID>0000-0003-3367-969X</ORCID><firstname>Mike</firstname><surname>Edwards</surname><name>Mike Edwards</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>df9a27bcf77b4769c2ebbb702b587491</sid><ORCID>0000-0003-3719-362X</ORCID><firstname>Jay</firstname><surname>Morgan</surname><name>Jay Morgan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-10-29</date><abstract>As a solution for the lost-in-space star identification problem we present Star Identification using Graph Neural Network (SIGNN), a novel approach using Graph Attention Networks. By representing the celestial sphere as a graph data structure, created from the ESA's Hipparcos catalogue, we are able to accurately capture the rich information and relationships within local star fields. Graph learning techniques allow our model to aggregate information and learn the relative importance of the nodes and structure within each stars local neighbourhood to it's identification. This approach, combined with our parametric data-generation and noise simulation, allows us to train a highly robust model capable of accurate star identification even under intensive noise, outperforming existing methods. Code and generation techniques will be available on github.com.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Feb. 2025</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>EPSRC</funders><projectreference>EP/S021892/1</projectreference><lastEdited>2024-10-29T11:12:12.2189113</lastEdited><Created>2024-10-29T10:58:16.3133961</Created><path><level id="1">College of Science</level><level id="2">Computer Science</level></path><authors><author><firstname>Floyd</firstname><surname>Hepburn-Dickins</surname><order>1</order></author><author><firstname>Mark</firstname><surname>Jones</surname><orcid>0000-0001-8991-1190</orcid><order>2</order></author><author><firstname>Mike</firstname><surname>Edwards</surname><orcid>0000-0003-3367-969X</orcid><order>3</order></author><author><firstname>Jay</firstname><surname>Morgan</surname><orcid>0000-0003-3719-362X</orcid><order>4</order></author><author><firstname>Steve</firstname><surname>Bell</surname><order>5</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
v2 68091 2024-10-29 SIGNN - Star Identification using Graph Neural Networks d8ecf05934e394b7bd020a2ce2c11d0c Floyd Hepburn-Dickins Floyd Hepburn-Dickins true false 2e1030b6e14fc9debd5d5ae7cc335562 0000-0001-8991-1190 Mark Jones Mark Jones true false 684864a1ce01c3d774e83ed55e41770e 0000-0003-3367-969X Mike Edwards Mike Edwards true false df9a27bcf77b4769c2ebbb702b587491 0000-0003-3719-362X Jay Morgan Jay Morgan true false 2024-10-29 As a solution for the lost-in-space star identification problem we present Star Identification using Graph Neural Network (SIGNN), a novel approach using Graph Attention Networks. By representing the celestial sphere as a graph data structure, created from the ESA's Hipparcos catalogue, we are able to accurately capture the rich information and relationships within local star fields. Graph learning techniques allow our model to aggregate information and learn the relative importance of the nodes and structure within each stars local neighbourhood to it's identification. This approach, combined with our parametric data-generation and noise simulation, allows us to train a highly robust model capable of accurate star identification even under intensive noise, outperforming existing methods. Code and generation techniques will be available on github.com. Conference Paper/Proceeding/Abstract Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Feb. 2025 0 0 0 0001-01-01 COLLEGE NANME COLLEGE CODE Swansea University Not Required EPSRC EP/S021892/1 2024-10-29T11:12:12.2189113 2024-10-29T10:58:16.3133961 College of Science Computer Science Floyd Hepburn-Dickins 1 Mark Jones 0000-0001-8991-1190 2 Mike Edwards 0000-0003-3367-969X 3 Jay Morgan 0000-0003-3719-362X 4 Steve Bell 5 |
title |
SIGNN - Star Identification using Graph Neural Networks |
spellingShingle |
SIGNN - Star Identification using Graph Neural Networks Floyd Hepburn-Dickins Mark Jones Mike Edwards Jay Morgan |
title_short |
SIGNN - Star Identification using Graph Neural Networks |
title_full |
SIGNN - Star Identification using Graph Neural Networks |
title_fullStr |
SIGNN - Star Identification using Graph Neural Networks |
title_full_unstemmed |
SIGNN - Star Identification using Graph Neural Networks |
title_sort |
SIGNN - Star Identification using Graph Neural Networks |
author_id_str_mv |
d8ecf05934e394b7bd020a2ce2c11d0c 2e1030b6e14fc9debd5d5ae7cc335562 684864a1ce01c3d774e83ed55e41770e df9a27bcf77b4769c2ebbb702b587491 |
author_id_fullname_str_mv |
d8ecf05934e394b7bd020a2ce2c11d0c_***_Floyd Hepburn-Dickins 2e1030b6e14fc9debd5d5ae7cc335562_***_Mark Jones 684864a1ce01c3d774e83ed55e41770e_***_Mike Edwards df9a27bcf77b4769c2ebbb702b587491_***_Jay Morgan |
author |
Floyd Hepburn-Dickins Mark Jones Mike Edwards Jay Morgan |
author2 |
Floyd Hepburn-Dickins Mark Jones Mike Edwards Jay Morgan Steve Bell |
format |
Conference Paper/Proceeding/Abstract |
container_title |
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Feb. 2025 |
institution |
Swansea University |
college_str |
College of Science |
hierarchytype |
|
hierarchy_top_id |
collegeofscience |
hierarchy_top_title |
College of Science |
hierarchy_parent_id |
collegeofscience |
hierarchy_parent_title |
College of Science |
department_str |
Computer Science{{{_:::_}}}College of Science{{{_:::_}}}Computer Science |
document_store_str |
0 |
active_str |
0 |
description |
As a solution for the lost-in-space star identification problem we present Star Identification using Graph Neural Network (SIGNN), a novel approach using Graph Attention Networks. By representing the celestial sphere as a graph data structure, created from the ESA's Hipparcos catalogue, we are able to accurately capture the rich information and relationships within local star fields. Graph learning techniques allow our model to aggregate information and learn the relative importance of the nodes and structure within each stars local neighbourhood to it's identification. This approach, combined with our parametric data-generation and noise simulation, allows us to train a highly robust model capable of accurate star identification even under intensive noise, outperforming existing methods. Code and generation techniques will be available on github.com. |
published_date |
0001-01-01T11:12:10Z |
_version_ |
1814246542192672768 |
score |
11.0351515 |