Conference Paper/Proceeding/Abstract 406 views 81 downloads
Online Deep Squat Evaluation: Leveraging Subject-Specific Adaptation and Information Retention
Sara Sardari,
Bahareh Nakisa,
Sara Sharifzadeh
,
Alireza Daneshkhah,
Seng W. Loke,
Michael J. Duncan,
Matteo Crotti,
Vasile Palade
2024 IEEE Consumer Life Tech (ICLT), Pages: 1 - 6
Swansea University Author:
Sara Sharifzadeh
-
PDF | Accepted Manuscript
Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).
Download (598.87KB)
DOI (Published version): 10.1109/iclt63507.2024.11038644
Abstract
Online Deep Squat Evaluation: Leveraging Subject-Specific Adaptation and Information Retention
| Published in: | 2024 IEEE Consumer Life Tech (ICLT) |
|---|---|
| ISBN: | 979-8-3315-1934-6 979-8-3315-1933-9 |
| Published: |
IEEE
2025
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa68670 |
| first_indexed |
2025-01-10T20:24:20Z |
|---|---|
| last_indexed |
2025-07-01T05:24:18Z |
| id |
cronfa68670 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-06-30T12:11:16.3185608</datestamp><bib-version>v2</bib-version><id>68670</id><entry>2025-01-10</entry><title>Online Deep Squat Evaluation: Leveraging Subject-Specific Adaptation and Information Retention</title><swanseaauthors><author><sid>a4e15f304398ecee3f28c7faec69c1b0</sid><ORCID>0000-0003-4621-2917</ORCID><firstname>Sara</firstname><surname>Sharifzadeh</surname><name>Sara Sharifzadeh</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-01-10</date><deptcode>MACS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>2024 IEEE Consumer Life Tech (ICLT)</journal><volume/><journalNumber/><paginationStart>1</paginationStart><paginationEnd>6</paginationEnd><publisher>IEEE</publisher><placeOfPublication/><isbnPrint>979-8-3315-1934-6</isbnPrint><isbnElectronic>979-8-3315-1933-9</isbnElectronic><issnPrint/><issnElectronic/><keywords>Metalearning, Continuing education, Adaptation models, Three-dimensional displays, Frequency modulation, Skeleton, Sensors, Quality assessment, Monitoring, Videos</keywords><publishedDay>19</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-06-19</publishedDate><doi>10.1109/iclt63507.2024.11038644</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>Co tutelle PhD funded between Coventry University and Deakin University, Australia</funders><projectreference/><lastEdited>2025-06-30T12:11:16.3185608</lastEdited><Created>2025-01-10T12:05:55.3017593</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Sara</firstname><surname>Sardari</surname><order>1</order></author><author><firstname>Bahareh</firstname><surname>Nakisa</surname><order>2</order></author><author><firstname>Sara</firstname><surname>Sharifzadeh</surname><orcid>0000-0003-4621-2917</orcid><order>3</order></author><author><firstname>Alireza</firstname><surname>Daneshkhah</surname><order>4</order></author><author><firstname>Seng W.</firstname><surname>Loke</surname><order>5</order></author><author><firstname>Michael J.</firstname><surname>Duncan</surname><order>6</order></author><author><firstname>Matteo</firstname><surname>Crotti</surname><order>7</order></author><author><firstname>Vasile</firstname><surname>Palade</surname><order>8</order></author></authors><documents><document><filename>68670__33740__7f0e7f5b9a3346afa512834ec7463d7c.pdf</filename><originalFilename>meta_learning_conference_final.pdf</originalFilename><uploaded>2025-03-06T11:15:19.0661850</uploaded><type>Output</type><contentLength>613244</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-06-30T12:11:16.3185608 v2 68670 2025-01-10 Online Deep Squat Evaluation: Leveraging Subject-Specific Adaptation and Information Retention a4e15f304398ecee3f28c7faec69c1b0 0000-0003-4621-2917 Sara Sharifzadeh Sara Sharifzadeh true false 2025-01-10 MACS Conference Paper/Proceeding/Abstract 2024 IEEE Consumer Life Tech (ICLT) 1 6 IEEE 979-8-3315-1934-6 979-8-3315-1933-9 Metalearning, Continuing education, Adaptation models, Three-dimensional displays, Frequency modulation, Skeleton, Sensors, Quality assessment, Monitoring, Videos 19 6 2025 2025-06-19 10.1109/iclt63507.2024.11038644 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Not Required Co tutelle PhD funded between Coventry University and Deakin University, Australia 2025-06-30T12:11:16.3185608 2025-01-10T12:05:55.3017593 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Sara Sardari 1 Bahareh Nakisa 2 Sara Sharifzadeh 0000-0003-4621-2917 3 Alireza Daneshkhah 4 Seng W. Loke 5 Michael J. Duncan 6 Matteo Crotti 7 Vasile Palade 8 68670__33740__7f0e7f5b9a3346afa512834ec7463d7c.pdf meta_learning_conference_final.pdf 2025-03-06T11:15:19.0661850 Output 613244 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en |
| title |
Online Deep Squat Evaluation: Leveraging Subject-Specific Adaptation and Information Retention |
| spellingShingle |
Online Deep Squat Evaluation: Leveraging Subject-Specific Adaptation and Information Retention Sara Sharifzadeh |
| title_short |
Online Deep Squat Evaluation: Leveraging Subject-Specific Adaptation and Information Retention |
| title_full |
Online Deep Squat Evaluation: Leveraging Subject-Specific Adaptation and Information Retention |
| title_fullStr |
Online Deep Squat Evaluation: Leveraging Subject-Specific Adaptation and Information Retention |
| title_full_unstemmed |
Online Deep Squat Evaluation: Leveraging Subject-Specific Adaptation and Information Retention |
| title_sort |
Online Deep Squat Evaluation: Leveraging Subject-Specific Adaptation and Information Retention |
| author_id_str_mv |
a4e15f304398ecee3f28c7faec69c1b0 |
| author_id_fullname_str_mv |
a4e15f304398ecee3f28c7faec69c1b0_***_Sara Sharifzadeh |
| author |
Sara Sharifzadeh |
| author2 |
Sara Sardari Bahareh Nakisa Sara Sharifzadeh Alireza Daneshkhah Seng W. Loke Michael J. Duncan Matteo Crotti Vasile Palade |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
2024 IEEE Consumer Life Tech (ICLT) |
| container_start_page |
1 |
| publishDate |
2025 |
| institution |
Swansea University |
| isbn |
979-8-3315-1934-6 979-8-3315-1933-9 |
| doi_str_mv |
10.1109/iclt63507.2024.11038644 |
| publisher |
IEEE |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
1 |
| active_str |
0 |
| published_date |
2025-06-19T05:21:54Z |
| _version_ |
1851641052013789184 |
| score |
11.089988 |

