No Cover Image

Journal article 12 views

Mesoscale Modelling of Fibrin Clots: The Interplay between Rheology and Microstructure at the Gel Point

Elnaz Zohravi, Nicolas Moreno, Karl Hawkins Orcid Logo, Daniel Curtis Orcid Logo, Marco Ellero

Soft Matter

Swansea University Authors: Karl Hawkins Orcid Logo, Daniel Curtis Orcid Logo, Marco Ellero

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.1039/d4sm01126k

Abstract

This study presents a numerical model for incipient fibrin-clot formation that captures characteristic rheological and microstructural features of the clot at the gel point. Using a mesoscale-clustering framework, we evaluate the effect of gel concentration or gel volume fraction and branching on th...

Full description

Published in: Soft Matter
ISSN: 1744-683X 1744-6848
Published: Royal Society of Chemistry (RSC) 2025
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa68690
first_indexed 2025-01-13T20:35:11Z
last_indexed 2025-01-13T20:35:11Z
id cronfa68690
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-01-13T15:59:15.6843439</datestamp><bib-version>v2</bib-version><id>68690</id><entry>2025-01-13</entry><title>Mesoscale Modelling of Fibrin Clots: The Interplay between Rheology and Microstructure at the Gel Point</title><swanseaauthors><author><sid>77c39404a9a98c6e2283d84815cba053</sid><ORCID>0000-0003-0174-4151</ORCID><firstname>Karl</firstname><surname>Hawkins</surname><name>Karl Hawkins</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e76ff28a23af2fe37099c4e9a24c1e58</sid><ORCID>0000-0002-6955-0524</ORCID><firstname>Daniel</firstname><surname>Curtis</surname><name>Daniel Curtis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>84f2af0791d38bdbf826728de7e5c69d</sid><firstname>Marco</firstname><surname>Ellero</surname><name>Marco Ellero</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-01-13</date><deptcode>MEDS</deptcode><abstract>This study presents a numerical model for incipient fibrin-clot formation that captures characteristic rheological and microstructural features of the clot at the gel point. Using a mesoscale-clustering framework, we evaluate the effect of gel concentration or gel volume fraction and branching on the fractal dimension, the gel time, and the viscoelastic properties of the clots. We show that variations in the gel concentration of our model can reproduce the effect of thrombin in the formation of fibrin clots. In particular, the model reproduces the fractal dimension&#x2019;s dependency on gel concentration and the trends in elasticity and gelation time with varying thrombin concentrations. This approach allows us to accurately recreate the gelation point of fibrin-thrombin gels, highlighting the intricate process of fibrin polymerization and gel network formation. This is critical for applications in the clinical and bioengineering fields where precise control over the gelation process is required.</abstract><type>Journal Article</type><journal>Soft Matter</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>Royal Society of Chemistry (RSC)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1744-683X</issnPrint><issnElectronic>1744-6848</issnElectronic><keywords/><publishedDay>6</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-01-06</publishedDate><doi>10.1039/d4sm01126k</doi><url>https://doi.org/10.1039/d4sm01126k</url><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2025-01-13T15:59:15.6843439</lastEdited><Created>2025-01-13T15:54:40.2761373</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Elnaz</firstname><surname>Zohravi</surname><order>1</order></author><author><firstname>Nicolas</firstname><surname>Moreno</surname><order>2</order></author><author><firstname>Karl</firstname><surname>Hawkins</surname><orcid>0000-0003-0174-4151</orcid><order>3</order></author><author><firstname>Daniel</firstname><surname>Curtis</surname><orcid>0000-0002-6955-0524</orcid><order>4</order></author><author><firstname>Marco</firstname><surname>Ellero</surname><order>5</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2025-01-13T15:59:15.6843439 v2 68690 2025-01-13 Mesoscale Modelling of Fibrin Clots: The Interplay between Rheology and Microstructure at the Gel Point 77c39404a9a98c6e2283d84815cba053 0000-0003-0174-4151 Karl Hawkins Karl Hawkins true false e76ff28a23af2fe37099c4e9a24c1e58 0000-0002-6955-0524 Daniel Curtis Daniel Curtis true false 84f2af0791d38bdbf826728de7e5c69d Marco Ellero Marco Ellero true false 2025-01-13 MEDS This study presents a numerical model for incipient fibrin-clot formation that captures characteristic rheological and microstructural features of the clot at the gel point. Using a mesoscale-clustering framework, we evaluate the effect of gel concentration or gel volume fraction and branching on the fractal dimension, the gel time, and the viscoelastic properties of the clots. We show that variations in the gel concentration of our model can reproduce the effect of thrombin in the formation of fibrin clots. In particular, the model reproduces the fractal dimension’s dependency on gel concentration and the trends in elasticity and gelation time with varying thrombin concentrations. This approach allows us to accurately recreate the gelation point of fibrin-thrombin gels, highlighting the intricate process of fibrin polymerization and gel network formation. This is critical for applications in the clinical and bioengineering fields where precise control over the gelation process is required. Journal Article Soft Matter Royal Society of Chemistry (RSC) 1744-683X 1744-6848 6 1 2025 2025-01-06 10.1039/d4sm01126k https://doi.org/10.1039/d4sm01126k COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University 2025-01-13T15:59:15.6843439 2025-01-13T15:54:40.2761373 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Elnaz Zohravi 1 Nicolas Moreno 2 Karl Hawkins 0000-0003-0174-4151 3 Daniel Curtis 0000-0002-6955-0524 4 Marco Ellero 5
title Mesoscale Modelling of Fibrin Clots: The Interplay between Rheology and Microstructure at the Gel Point
spellingShingle Mesoscale Modelling of Fibrin Clots: The Interplay between Rheology and Microstructure at the Gel Point
Karl Hawkins
Daniel Curtis
Marco Ellero
title_short Mesoscale Modelling of Fibrin Clots: The Interplay between Rheology and Microstructure at the Gel Point
title_full Mesoscale Modelling of Fibrin Clots: The Interplay between Rheology and Microstructure at the Gel Point
title_fullStr Mesoscale Modelling of Fibrin Clots: The Interplay between Rheology and Microstructure at the Gel Point
title_full_unstemmed Mesoscale Modelling of Fibrin Clots: The Interplay between Rheology and Microstructure at the Gel Point
title_sort Mesoscale Modelling of Fibrin Clots: The Interplay between Rheology and Microstructure at the Gel Point
author_id_str_mv 77c39404a9a98c6e2283d84815cba053
e76ff28a23af2fe37099c4e9a24c1e58
84f2af0791d38bdbf826728de7e5c69d
author_id_fullname_str_mv 77c39404a9a98c6e2283d84815cba053_***_Karl Hawkins
e76ff28a23af2fe37099c4e9a24c1e58_***_Daniel Curtis
84f2af0791d38bdbf826728de7e5c69d_***_Marco Ellero
author Karl Hawkins
Daniel Curtis
Marco Ellero
author2 Elnaz Zohravi
Nicolas Moreno
Karl Hawkins
Daniel Curtis
Marco Ellero
format Journal article
container_title Soft Matter
publishDate 2025
institution Swansea University
issn 1744-683X
1744-6848
doi_str_mv 10.1039/d4sm01126k
publisher Royal Society of Chemistry (RSC)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
url https://doi.org/10.1039/d4sm01126k
document_store_str 0
active_str 0
description This study presents a numerical model for incipient fibrin-clot formation that captures characteristic rheological and microstructural features of the clot at the gel point. Using a mesoscale-clustering framework, we evaluate the effect of gel concentration or gel volume fraction and branching on the fractal dimension, the gel time, and the viscoelastic properties of the clots. We show that variations in the gel concentration of our model can reproduce the effect of thrombin in the formation of fibrin clots. In particular, the model reproduces the fractal dimension’s dependency on gel concentration and the trends in elasticity and gelation time with varying thrombin concentrations. This approach allows us to accurately recreate the gelation point of fibrin-thrombin gels, highlighting the intricate process of fibrin polymerization and gel network formation. This is critical for applications in the clinical and bioengineering fields where precise control over the gelation process is required.
published_date 2025-01-06T14:39:32Z
_version_ 1821326151082049536
score 11.048042