Conference Paper/Proceeding/Abstract 432 views 227 downloads
Exploring Human Activity Recognition with Acoustic Data: A Comparative Study of CNN-LSTM, ViViT, and ResNet-Temporal Transformer Model
2025 IEEE Symposium on Computational Intelligence in Image, Signal Processing and Synthetic Media Companion (CISM Companion), Pages: 1 - 5
Swansea University Authors:
AALAA HUMAIDAN, Jeny Roy , Sara Sharifzadeh
, Andrea Tales
, Joe MacInnes
-
PDF | Accepted Manuscript
Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).
Download (310.58KB)
DOI (Published version): 10.1109/cismcompanion65074.2025.11032695
Abstract
Exploring Human Activity Recognition with Acoustic Data: A Comparative Study of CNN-LSTM, ViViT, and ResNet-Temporal Transformer Model
| Published in: | 2025 IEEE Symposium on Computational Intelligence in Image, Signal Processing and Synthetic Media Companion (CISM Companion) |
|---|---|
| ISBN: | 979-8-3315-0852-4 979-8-3315-0851-7 |
| Published: |
IEEE
2025
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa69135 |
| first_indexed |
2025-03-22T16:01:52Z |
|---|---|
| last_indexed |
2025-06-28T07:52:30Z |
| id |
cronfa69135 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-06-27T12:28:38.8498359</datestamp><bib-version>v2</bib-version><id>69135</id><entry>2025-03-22</entry><title>Exploring Human Activity Recognition with Acoustic Data: A Comparative Study of CNN-LSTM, ViViT, and ResNet-Temporal Transformer Model</title><swanseaauthors><author><sid>9d418b788707447f2ad49125fa3867cf</sid><firstname>AALAA</firstname><surname>HUMAIDAN</surname><name>AALAA HUMAIDAN</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>00fd1a17e776f2e1d532ab4125995465</sid><ORCID>0009-0006-3354-7557</ORCID><firstname>Jeny</firstname><surname>Roy</surname><name>Jeny Roy</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a4e15f304398ecee3f28c7faec69c1b0</sid><ORCID>0000-0003-4621-2917</ORCID><firstname>Sara</firstname><surname>Sharifzadeh</surname><name>Sara Sharifzadeh</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>9b53a866ddacb566c38ee336706aef5f</sid><ORCID>0000-0003-4825-4555</ORCID><firstname>Andrea</firstname><surname>Tales</surname><name>Andrea Tales</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>06dcb003ec50192bafde2c77bef4fd5c</sid><ORCID>0000-0002-5134-1601</ORCID><firstname>Joe</firstname><surname>MacInnes</surname><name>Joe MacInnes</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-03-22</date><deptcode>MACS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>2025 IEEE Symposium on Computational Intelligence in Image, Signal Processing and Synthetic Media Companion (CISM Companion)</journal><volume/><journalNumber/><paginationStart>1</paginationStart><paginationEnd>5</paginationEnd><publisher>IEEE</publisher><placeOfPublication/><isbnPrint>979-8-3315-0852-4</isbnPrint><isbnElectronic>979-8-3315-0851-7</isbnElectronic><issnPrint/><issnElectronic/><keywords>Accuracy, Computational modeling, Noise, Pipelines, Transformers, Feature extraction, Data models, Acoustics, Human activity recognition, Convolutional neural networks</keywords><publishedDay>17</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-06-17</publishedDate><doi>10.1109/cismcompanion65074.2025.11032695</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>This project is partly supported by Swansea University IAA funding scheme and Coventry University</funders><projectreference/><lastEdited>2025-06-27T12:28:38.8498359</lastEdited><Created>2025-03-22T11:51:08.4451291</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>AALAA</firstname><surname>HUMAIDAN</surname><order>1</order></author><author><firstname>Jeny</firstname><surname>Roy</surname><orcid>0009-0006-3354-7557</orcid><order>2</order></author><author><firstname>Sara</firstname><surname>Sharifzadeh</surname><orcid>0000-0003-4621-2917</orcid><order>3</order></author><author><firstname>Ruchita</firstname><surname>Mehta</surname><order>4</order></author><author><firstname>Andrea</firstname><surname>Tales</surname><orcid>0000-0003-4825-4555</orcid><order>5</order></author><author><firstname>Joe</firstname><surname>MacInnes</surname><orcid>0000-0002-5134-1601</orcid><order>6</order></author></authors><documents><document><filename>69135__33859__8b03d12386bc415886fd571aded0b2ac.pdf</filename><originalFilename>IEEE_Conference_Template_Revised_Submission.pdf</originalFilename><uploaded>2025-03-22T13:13:21.7234283</uploaded><type>Output</type><contentLength>318034</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2025-04-22T00:00:00.0000000</embargoDate><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-06-27T12:28:38.8498359 v2 69135 2025-03-22 Exploring Human Activity Recognition with Acoustic Data: A Comparative Study of CNN-LSTM, ViViT, and ResNet-Temporal Transformer Model 9d418b788707447f2ad49125fa3867cf AALAA HUMAIDAN AALAA HUMAIDAN true false 00fd1a17e776f2e1d532ab4125995465 0009-0006-3354-7557 Jeny Roy Jeny Roy true false a4e15f304398ecee3f28c7faec69c1b0 0000-0003-4621-2917 Sara Sharifzadeh Sara Sharifzadeh true false 9b53a866ddacb566c38ee336706aef5f 0000-0003-4825-4555 Andrea Tales Andrea Tales true false 06dcb003ec50192bafde2c77bef4fd5c 0000-0002-5134-1601 Joe MacInnes Joe MacInnes true false 2025-03-22 MACS Conference Paper/Proceeding/Abstract 2025 IEEE Symposium on Computational Intelligence in Image, Signal Processing and Synthetic Media Companion (CISM Companion) 1 5 IEEE 979-8-3315-0852-4 979-8-3315-0851-7 Accuracy, Computational modeling, Noise, Pipelines, Transformers, Feature extraction, Data models, Acoustics, Human activity recognition, Convolutional neural networks 17 6 2025 2025-06-17 10.1109/cismcompanion65074.2025.11032695 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Not Required This project is partly supported by Swansea University IAA funding scheme and Coventry University 2025-06-27T12:28:38.8498359 2025-03-22T11:51:08.4451291 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science AALAA HUMAIDAN 1 Jeny Roy 0009-0006-3354-7557 2 Sara Sharifzadeh 0000-0003-4621-2917 3 Ruchita Mehta 4 Andrea Tales 0000-0003-4825-4555 5 Joe MacInnes 0000-0002-5134-1601 6 69135__33859__8b03d12386bc415886fd571aded0b2ac.pdf IEEE_Conference_Template_Revised_Submission.pdf 2025-03-22T13:13:21.7234283 Output 318034 application/pdf Accepted Manuscript true 2025-04-22T00:00:00.0000000 Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en |
| title |
Exploring Human Activity Recognition with Acoustic Data: A Comparative Study of CNN-LSTM, ViViT, and ResNet-Temporal Transformer Model |
| spellingShingle |
Exploring Human Activity Recognition with Acoustic Data: A Comparative Study of CNN-LSTM, ViViT, and ResNet-Temporal Transformer Model AALAA HUMAIDAN Jeny Roy Sara Sharifzadeh Andrea Tales Joe MacInnes |
| title_short |
Exploring Human Activity Recognition with Acoustic Data: A Comparative Study of CNN-LSTM, ViViT, and ResNet-Temporal Transformer Model |
| title_full |
Exploring Human Activity Recognition with Acoustic Data: A Comparative Study of CNN-LSTM, ViViT, and ResNet-Temporal Transformer Model |
| title_fullStr |
Exploring Human Activity Recognition with Acoustic Data: A Comparative Study of CNN-LSTM, ViViT, and ResNet-Temporal Transformer Model |
| title_full_unstemmed |
Exploring Human Activity Recognition with Acoustic Data: A Comparative Study of CNN-LSTM, ViViT, and ResNet-Temporal Transformer Model |
| title_sort |
Exploring Human Activity Recognition with Acoustic Data: A Comparative Study of CNN-LSTM, ViViT, and ResNet-Temporal Transformer Model |
| author_id_str_mv |
9d418b788707447f2ad49125fa3867cf 00fd1a17e776f2e1d532ab4125995465 a4e15f304398ecee3f28c7faec69c1b0 9b53a866ddacb566c38ee336706aef5f 06dcb003ec50192bafde2c77bef4fd5c |
| author_id_fullname_str_mv |
9d418b788707447f2ad49125fa3867cf_***_AALAA HUMAIDAN 00fd1a17e776f2e1d532ab4125995465_***_Jeny Roy a4e15f304398ecee3f28c7faec69c1b0_***_Sara Sharifzadeh 9b53a866ddacb566c38ee336706aef5f_***_Andrea Tales 06dcb003ec50192bafde2c77bef4fd5c_***_Joe MacInnes |
| author |
AALAA HUMAIDAN Jeny Roy Sara Sharifzadeh Andrea Tales Joe MacInnes |
| author2 |
AALAA HUMAIDAN Jeny Roy Sara Sharifzadeh Ruchita Mehta Andrea Tales Joe MacInnes |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
2025 IEEE Symposium on Computational Intelligence in Image, Signal Processing and Synthetic Media Companion (CISM Companion) |
| container_start_page |
1 |
| publishDate |
2025 |
| institution |
Swansea University |
| isbn |
979-8-3315-0852-4 979-8-3315-0851-7 |
| doi_str_mv |
10.1109/cismcompanion65074.2025.11032695 |
| publisher |
IEEE |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
1 |
| active_str |
0 |
| published_date |
2025-06-17T05:26:09Z |
| _version_ |
1851369528659804160 |
| score |
11.089572 |

