No Cover Image

Journal article 419 views 225 downloads

Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior

Dmitri Finkelshtein Orcid Logo, Anatoliy Malyarenko, Yuliya Mishura, Kostiantyn Ralchenko

Methodology and Computing in Applied Probability, Volume: 27, Issue: 2

Swansea University Author: Dmitri Finkelshtein Orcid Logo

  • 69393.VoR.pdf

    PDF | Version of Record

    © The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License.

    Download (2.89MB)

Abstract

The paper extends the analysis of the entropies of the Poisson distribution with parameter λ.It demonstrates that the Tsallis and Sharma–Mittal entropies exhibit monotonic behavior with respect to λ, whereas two generalized forms of the Rényi entropy may exhibit “anomalous” (non-monotonic) behavior....

Full description

Published in: Methodology and Computing in Applied Probability
ISSN: 1387-5841 1573-7713
Published: Springer Science and Business Media LLC 2025
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa69393
first_indexed 2025-05-01T10:08:33Z
last_indexed 2025-06-03T04:46:55Z
id cronfa69393
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-06-02T14:15:13.4895967</datestamp><bib-version>v2</bib-version><id>69393</id><entry>2025-05-01</entry><title>Entropies of the Poisson Distribution as Functions of Intensity: &#x201C;Normal&#x201D; and &#x201C;Anomalous&#x201D; Behavior</title><swanseaauthors><author><sid>4dc251ebcd7a89a15b71c846cd0ddaaf</sid><ORCID>0000-0001-7136-9399</ORCID><firstname>Dmitri</firstname><surname>Finkelshtein</surname><name>Dmitri Finkelshtein</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-05-01</date><deptcode>MACS</deptcode><abstract>The paper extends the analysis of the entropies of the Poisson distribution with parameter &#x3BB;.It demonstrates that the Tsallis and Sharma&#x2013;Mittal entropies exhibit monotonic behavior with respect to &#x3BB;, whereas two generalized forms of the R&#xE9;nyi entropy may exhibit &#x201C;anomalous&#x201D; (non-monotonic) behavior. Additionally, we examine the asymptotic behavior of the entropies as &#x3BB; &#x2192;&#x221E;and provide both lower and upper bounds for them.</abstract><type>Journal Article</type><journal>Methodology and Computing in Applied Probability</journal><volume>27</volume><journalNumber>2</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1387-5841</issnPrint><issnElectronic>1573-7713</issnElectronic><keywords>Shannon entropy; R&#xE9;nyi entropy; Tsallis entropy; Sharma&#x2013;Mittal entropy; Poisson distribution</keywords><publishedDay>22</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-05-22</publishedDate><doi>10.1007/s11009-025-10171-9</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Stiftelsen f&#xF6;r Strategisk Forskning (UKR24-0004); Japan Science and Technology Agency (JPMJCR2115); Norges Forskningsr&#xE5;d (274410, 274410); Research Council of Finland (359815)</funders><projectreference/><lastEdited>2025-06-02T14:15:13.4895967</lastEdited><Created>2025-05-01T11:01:40.2979018</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Dmitri</firstname><surname>Finkelshtein</surname><orcid>0000-0001-7136-9399</orcid><order>1</order></author><author><firstname>Anatoliy</firstname><surname>Malyarenko</surname><order>2</order></author><author><firstname>Yuliya</firstname><surname>Mishura</surname><order>3</order></author><author><firstname>Kostiantyn</firstname><surname>Ralchenko</surname><order>4</order></author></authors><documents><document><filename>69393__34380__5af9ae732dd6427c81663317f08b8f3c.pdf</filename><originalFilename>69393.VoR.pdf</originalFilename><uploaded>2025-06-02T14:13:36.8338790</uploaded><type>Output</type><contentLength>3026829</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-06-02T14:15:13.4895967 v2 69393 2025-05-01 Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior 4dc251ebcd7a89a15b71c846cd0ddaaf 0000-0001-7136-9399 Dmitri Finkelshtein Dmitri Finkelshtein true false 2025-05-01 MACS The paper extends the analysis of the entropies of the Poisson distribution with parameter λ.It demonstrates that the Tsallis and Sharma–Mittal entropies exhibit monotonic behavior with respect to λ, whereas two generalized forms of the Rényi entropy may exhibit “anomalous” (non-monotonic) behavior. Additionally, we examine the asymptotic behavior of the entropies as λ →∞and provide both lower and upper bounds for them. Journal Article Methodology and Computing in Applied Probability 27 2 Springer Science and Business Media LLC 1387-5841 1573-7713 Shannon entropy; Rényi entropy; Tsallis entropy; Sharma–Mittal entropy; Poisson distribution 22 5 2025 2025-05-22 10.1007/s11009-025-10171-9 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University SU Library paid the OA fee (TA Institutional Deal) Stiftelsen för Strategisk Forskning (UKR24-0004); Japan Science and Technology Agency (JPMJCR2115); Norges Forskningsråd (274410, 274410); Research Council of Finland (359815) 2025-06-02T14:15:13.4895967 2025-05-01T11:01:40.2979018 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Dmitri Finkelshtein 0000-0001-7136-9399 1 Anatoliy Malyarenko 2 Yuliya Mishura 3 Kostiantyn Ralchenko 4 69393__34380__5af9ae732dd6427c81663317f08b8f3c.pdf 69393.VoR.pdf 2025-06-02T14:13:36.8338790 Output 3026829 application/pdf Version of Record true © The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License. true eng http://creativecommons.org/licenses/by/4.0/
title Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior
spellingShingle Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior
Dmitri Finkelshtein
title_short Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior
title_full Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior
title_fullStr Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior
title_full_unstemmed Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior
title_sort Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior
author_id_str_mv 4dc251ebcd7a89a15b71c846cd0ddaaf
author_id_fullname_str_mv 4dc251ebcd7a89a15b71c846cd0ddaaf_***_Dmitri Finkelshtein
author Dmitri Finkelshtein
author2 Dmitri Finkelshtein
Anatoliy Malyarenko
Yuliya Mishura
Kostiantyn Ralchenko
format Journal article
container_title Methodology and Computing in Applied Probability
container_volume 27
container_issue 2
publishDate 2025
institution Swansea University
issn 1387-5841
1573-7713
doi_str_mv 10.1007/s11009-025-10171-9
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description The paper extends the analysis of the entropies of the Poisson distribution with parameter λ.It demonstrates that the Tsallis and Sharma–Mittal entropies exhibit monotonic behavior with respect to λ, whereas two generalized forms of the Rényi entropy may exhibit “anomalous” (non-monotonic) behavior. Additionally, we examine the asymptotic behavior of the entropies as λ →∞and provide both lower and upper bounds for them.
published_date 2025-05-22T05:23:49Z
_version_ 1851641172415479808
score 11.090009