Journal article 419 views 225 downloads
Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior
Methodology and Computing in Applied Probability, Volume: 27, Issue: 2
Swansea University Author:
Dmitri Finkelshtein
-
PDF | Version of Record
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License.
Download (2.89MB)
DOI (Published version): 10.1007/s11009-025-10171-9
Abstract
The paper extends the analysis of the entropies of the Poisson distribution with parameter λ.It demonstrates that the Tsallis and Sharma–Mittal entropies exhibit monotonic behavior with respect to λ, whereas two generalized forms of the Rényi entropy may exhibit “anomalous” (non-monotonic) behavior....
| Published in: | Methodology and Computing in Applied Probability |
|---|---|
| ISSN: | 1387-5841 1573-7713 |
| Published: |
Springer Science and Business Media LLC
2025
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa69393 |
| first_indexed |
2025-05-01T10:08:33Z |
|---|---|
| last_indexed |
2025-06-03T04:46:55Z |
| id |
cronfa69393 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-06-02T14:15:13.4895967</datestamp><bib-version>v2</bib-version><id>69393</id><entry>2025-05-01</entry><title>Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior</title><swanseaauthors><author><sid>4dc251ebcd7a89a15b71c846cd0ddaaf</sid><ORCID>0000-0001-7136-9399</ORCID><firstname>Dmitri</firstname><surname>Finkelshtein</surname><name>Dmitri Finkelshtein</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-05-01</date><deptcode>MACS</deptcode><abstract>The paper extends the analysis of the entropies of the Poisson distribution with parameter λ.It demonstrates that the Tsallis and Sharma–Mittal entropies exhibit monotonic behavior with respect to λ, whereas two generalized forms of the Rényi entropy may exhibit “anomalous” (non-monotonic) behavior. Additionally, we examine the asymptotic behavior of the entropies as λ →∞and provide both lower and upper bounds for them.</abstract><type>Journal Article</type><journal>Methodology and Computing in Applied Probability</journal><volume>27</volume><journalNumber>2</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1387-5841</issnPrint><issnElectronic>1573-7713</issnElectronic><keywords>Shannon entropy; Rényi entropy; Tsallis entropy; Sharma–Mittal entropy; Poisson distribution</keywords><publishedDay>22</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-05-22</publishedDate><doi>10.1007/s11009-025-10171-9</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Stiftelsen för Strategisk Forskning (UKR24-0004); Japan Science and Technology Agency (JPMJCR2115); Norges Forskningsråd (274410, 274410); Research Council of Finland (359815)</funders><projectreference/><lastEdited>2025-06-02T14:15:13.4895967</lastEdited><Created>2025-05-01T11:01:40.2979018</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Dmitri</firstname><surname>Finkelshtein</surname><orcid>0000-0001-7136-9399</orcid><order>1</order></author><author><firstname>Anatoliy</firstname><surname>Malyarenko</surname><order>2</order></author><author><firstname>Yuliya</firstname><surname>Mishura</surname><order>3</order></author><author><firstname>Kostiantyn</firstname><surname>Ralchenko</surname><order>4</order></author></authors><documents><document><filename>69393__34380__5af9ae732dd6427c81663317f08b8f3c.pdf</filename><originalFilename>69393.VoR.pdf</originalFilename><uploaded>2025-06-02T14:13:36.8338790</uploaded><type>Output</type><contentLength>3026829</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-06-02T14:15:13.4895967 v2 69393 2025-05-01 Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior 4dc251ebcd7a89a15b71c846cd0ddaaf 0000-0001-7136-9399 Dmitri Finkelshtein Dmitri Finkelshtein true false 2025-05-01 MACS The paper extends the analysis of the entropies of the Poisson distribution with parameter λ.It demonstrates that the Tsallis and Sharma–Mittal entropies exhibit monotonic behavior with respect to λ, whereas two generalized forms of the Rényi entropy may exhibit “anomalous” (non-monotonic) behavior. Additionally, we examine the asymptotic behavior of the entropies as λ →∞and provide both lower and upper bounds for them. Journal Article Methodology and Computing in Applied Probability 27 2 Springer Science and Business Media LLC 1387-5841 1573-7713 Shannon entropy; Rényi entropy; Tsallis entropy; Sharma–Mittal entropy; Poisson distribution 22 5 2025 2025-05-22 10.1007/s11009-025-10171-9 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University SU Library paid the OA fee (TA Institutional Deal) Stiftelsen för Strategisk Forskning (UKR24-0004); Japan Science and Technology Agency (JPMJCR2115); Norges Forskningsråd (274410, 274410); Research Council of Finland (359815) 2025-06-02T14:15:13.4895967 2025-05-01T11:01:40.2979018 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Dmitri Finkelshtein 0000-0001-7136-9399 1 Anatoliy Malyarenko 2 Yuliya Mishura 3 Kostiantyn Ralchenko 4 69393__34380__5af9ae732dd6427c81663317f08b8f3c.pdf 69393.VoR.pdf 2025-06-02T14:13:36.8338790 Output 3026829 application/pdf Version of Record true © The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License. true eng http://creativecommons.org/licenses/by/4.0/ |
| title |
Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior |
| spellingShingle |
Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior Dmitri Finkelshtein |
| title_short |
Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior |
| title_full |
Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior |
| title_fullStr |
Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior |
| title_full_unstemmed |
Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior |
| title_sort |
Entropies of the Poisson Distribution as Functions of Intensity: “Normal” and “Anomalous” Behavior |
| author_id_str_mv |
4dc251ebcd7a89a15b71c846cd0ddaaf |
| author_id_fullname_str_mv |
4dc251ebcd7a89a15b71c846cd0ddaaf_***_Dmitri Finkelshtein |
| author |
Dmitri Finkelshtein |
| author2 |
Dmitri Finkelshtein Anatoliy Malyarenko Yuliya Mishura Kostiantyn Ralchenko |
| format |
Journal article |
| container_title |
Methodology and Computing in Applied Probability |
| container_volume |
27 |
| container_issue |
2 |
| publishDate |
2025 |
| institution |
Swansea University |
| issn |
1387-5841 1573-7713 |
| doi_str_mv |
10.1007/s11009-025-10171-9 |
| publisher |
Springer Science and Business Media LLC |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
| document_store_str |
1 |
| active_str |
0 |
| description |
The paper extends the analysis of the entropies of the Poisson distribution with parameter λ.It demonstrates that the Tsallis and Sharma–Mittal entropies exhibit monotonic behavior with respect to λ, whereas two generalized forms of the Rényi entropy may exhibit “anomalous” (non-monotonic) behavior. Additionally, we examine the asymptotic behavior of the entropies as λ →∞and provide both lower and upper bounds for them. |
| published_date |
2025-05-22T05:23:49Z |
| _version_ |
1851641172415479808 |
| score |
11.090009 |

