Journal article 334 views 100 downloads
Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes
ACS Energy Letters, Volume: 10, Issue: 6, Pages: 2736 - 2742
Swansea University Authors:
David Beynon , Trystan Watson
-
PDF | Version of Record
© 2025 The Authors. This article is licensed under CC-BY 4.0.
Download (2.43MB)
DOI (Published version): 10.1021/acsenergylett.4c03403
Abstract
Perovskite solar cells achieve high power conversion efficiencies but usually rely on vacuum-deposited metallic contacts, leading to high material costs for noble metals and stability issues for more reactive metals. Carbon-based materials offer a cost-effective and potentially more stable alternati...
| Published in: | ACS Energy Letters |
|---|---|
| ISSN: | 2380-8195 2380-8195 |
| Published: |
American Chemical Society
2025
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa69746 |
| first_indexed |
2025-06-16T13:30:36Z |
|---|---|
| last_indexed |
2025-06-17T05:24:32Z |
| id |
cronfa69746 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-06-16T14:31:52.7195167</datestamp><bib-version>v2</bib-version><id>69746</id><entry>2025-06-16</entry><title>Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes</title><swanseaauthors><author><sid>f5cf40043658d0b8a747ef6224019939</sid><ORCID>0000-0002-8189-9489</ORCID><firstname>David</firstname><surname>Beynon</surname><name>David Beynon</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-06-16</date><deptcode>EAAS</deptcode><abstract>Perovskite solar cells achieve high power conversion efficiencies but usually rely on vacuum-deposited metallic contacts, leading to high material costs for noble metals and stability issues for more reactive metals. Carbon-based materials offer a cost-effective and potentially more stable alternative. The vast majority of carbon-electrode PSCs use the negative-intrinsic-positive (n-i-p) or “hole-transport-layer-free” architectures. Here, we present a systematic study to assess the compatibility of “inverted”, p-i-n configuration PSC contact layers with carbon top electrodes. We identify incompatibilities between common electron transport layers and the carbon electrode deposition process and previously unobserved semiconducting properties in carbon electrodes with unique implications for charge extraction and electronic behavior. To overcome these issues, we introduce a double-layer atomic layer deposited tin oxide (SnO2) and Poly­(2,3-dihydrothieno-1,4-dioxin)-poly­(styrenesulfonate) (PEDOT:PSS), yielding up to 16.1% PCE and a retained 94% performance after 500 h of outdoor aging. The study is a crucial step forward for printable, metal-electrode-free, and evaporation-free perovskite PV technologies.</abstract><type>Journal Article</type><journal>ACS Energy Letters</journal><volume>10</volume><journalNumber>6</journalNumber><paginationStart>2736</paginationStart><paginationEnd>2742</paginationEnd><publisher>American Chemical Society</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2380-8195</issnPrint><issnElectronic>2380-8195</issnElectronic><keywords/><publishedDay>13</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-06-13</publishedDate><doi>10.1021/acsenergylett.4c03403</doi><url/><notes>Letter</notes><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>This work was part funded by the EPSRC Programme Grant ATIP (Application Targeted and Integrated Photovoltaics) (EP/T028513/1) and the Perovskite solar cells with graphite electrodes: Advanced interfaces for highest performance and stability (PeroGAIN) project by Deutsche Forschungsgemeinschaft (DFG, SPP2196). We acknowledge the EPSRC National Thin Film Facility for Advanced Functional Materials (NTCF), hosted by the Department of Physics at the University of Oxford, and Dr Jin Yao, the facility engineer, for his support. The NTCF was funded by ESPRC (EP/M022900/1), the Wolfson Foundation and the University of Oxford.</funders><projectreference/><lastEdited>2025-06-16T14:31:52.7195167</lastEdited><Created>2025-06-16T14:23:25.7099698</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Tino</firstname><surname>Lukas</surname><orcid>0000-0003-0277-4838</orcid><order>1</order></author><author><firstname>Seongrok</firstname><surname>Seo</surname><orcid>0009-0000-6032-2747</orcid><order>2</order></author><author><firstname>Philippe</firstname><surname>Holzhey</surname><orcid>0000-0003-3688-1607</orcid><order>3</order></author><author><firstname>Katherine</firstname><surname>Stewart</surname><order>4</order></author><author><firstname>Charlie</firstname><surname>Henderson</surname><orcid>0000-0003-3060-5329</orcid><order>5</order></author><author><firstname>Lukas</firstname><surname>Wagner</surname><orcid>0000-0002-6883-5886</orcid><order>6</order></author><author><firstname>David</firstname><surname>Beynon</surname><orcid>0000-0002-8189-9489</orcid><order>7</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>8</order></author><author><firstname>Ji-Seon</firstname><surname>Kim</surname><orcid>0000-0003-4715-3656</orcid><order>9</order></author><author><firstname>Markus</firstname><surname>Kohlstädt</surname><orcid>0000-0002-9399-466X</orcid><order>10</order></author><author><firstname>Henry J.</firstname><surname>Snaith</surname><orcid>0000-0001-8511-790X</orcid><order>11</order></author></authors><documents><document><filename>69746__34490__4770f0f3024d40648afd51d21b754855.pdf</filename><originalFilename>nz4c03403.pdf</originalFilename><uploaded>2025-06-16T14:23:25.6738438</uploaded><type>Output</type><contentLength>2552276</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2025 The Authors. This article is licensed under CC-BY 4.0.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-06-16T14:31:52.7195167 v2 69746 2025-06-16 Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes f5cf40043658d0b8a747ef6224019939 0000-0002-8189-9489 David Beynon David Beynon true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 2025-06-16 EAAS Perovskite solar cells achieve high power conversion efficiencies but usually rely on vacuum-deposited metallic contacts, leading to high material costs for noble metals and stability issues for more reactive metals. Carbon-based materials offer a cost-effective and potentially more stable alternative. The vast majority of carbon-electrode PSCs use the negative-intrinsic-positive (n-i-p) or “hole-transport-layer-free” architectures. Here, we present a systematic study to assess the compatibility of “inverted”, p-i-n configuration PSC contact layers with carbon top electrodes. We identify incompatibilities between common electron transport layers and the carbon electrode deposition process and previously unobserved semiconducting properties in carbon electrodes with unique implications for charge extraction and electronic behavior. To overcome these issues, we introduce a double-layer atomic layer deposited tin oxide (SnO2) and Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS), yielding up to 16.1% PCE and a retained 94% performance after 500 h of outdoor aging. The study is a crucial step forward for printable, metal-electrode-free, and evaporation-free perovskite PV technologies. Journal Article ACS Energy Letters 10 6 2736 2742 American Chemical Society 2380-8195 2380-8195 13 6 2025 2025-06-13 10.1021/acsenergylett.4c03403 Letter COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University Another institution paid the OA fee This work was part funded by the EPSRC Programme Grant ATIP (Application Targeted and Integrated Photovoltaics) (EP/T028513/1) and the Perovskite solar cells with graphite electrodes: Advanced interfaces for highest performance and stability (PeroGAIN) project by Deutsche Forschungsgemeinschaft (DFG, SPP2196). We acknowledge the EPSRC National Thin Film Facility for Advanced Functional Materials (NTCF), hosted by the Department of Physics at the University of Oxford, and Dr Jin Yao, the facility engineer, for his support. The NTCF was funded by ESPRC (EP/M022900/1), the Wolfson Foundation and the University of Oxford. 2025-06-16T14:31:52.7195167 2025-06-16T14:23:25.7099698 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Tino Lukas 0000-0003-0277-4838 1 Seongrok Seo 0009-0000-6032-2747 2 Philippe Holzhey 0000-0003-3688-1607 3 Katherine Stewart 4 Charlie Henderson 0000-0003-3060-5329 5 Lukas Wagner 0000-0002-6883-5886 6 David Beynon 0000-0002-8189-9489 7 Trystan Watson 0000-0002-8015-1436 8 Ji-Seon Kim 0000-0003-4715-3656 9 Markus Kohlstädt 0000-0002-9399-466X 10 Henry J. Snaith 0000-0001-8511-790X 11 69746__34490__4770f0f3024d40648afd51d21b754855.pdf nz4c03403.pdf 2025-06-16T14:23:25.6738438 Output 2552276 application/pdf Version of Record true © 2025 The Authors. This article is licensed under CC-BY 4.0. true eng https://creativecommons.org/licenses/by/4.0/ |
| title |
Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes |
| spellingShingle |
Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes David Beynon Trystan Watson |
| title_short |
Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes |
| title_full |
Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes |
| title_fullStr |
Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes |
| title_full_unstemmed |
Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes |
| title_sort |
Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes |
| author_id_str_mv |
f5cf40043658d0b8a747ef6224019939 a210327b52472cfe8df9b8108d661457 |
| author_id_fullname_str_mv |
f5cf40043658d0b8a747ef6224019939_***_David Beynon a210327b52472cfe8df9b8108d661457_***_Trystan Watson |
| author |
David Beynon Trystan Watson |
| author2 |
Tino Lukas Seongrok Seo Philippe Holzhey Katherine Stewart Charlie Henderson Lukas Wagner David Beynon Trystan Watson Ji-Seon Kim Markus Kohlstädt Henry J. Snaith |
| format |
Journal article |
| container_title |
ACS Energy Letters |
| container_volume |
10 |
| container_issue |
6 |
| container_start_page |
2736 |
| publishDate |
2025 |
| institution |
Swansea University |
| issn |
2380-8195 2380-8195 |
| doi_str_mv |
10.1021/acsenergylett.4c03403 |
| publisher |
American Chemical Society |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
| document_store_str |
1 |
| active_str |
0 |
| description |
Perovskite solar cells achieve high power conversion efficiencies but usually rely on vacuum-deposited metallic contacts, leading to high material costs for noble metals and stability issues for more reactive metals. Carbon-based materials offer a cost-effective and potentially more stable alternative. The vast majority of carbon-electrode PSCs use the negative-intrinsic-positive (n-i-p) or “hole-transport-layer-free” architectures. Here, we present a systematic study to assess the compatibility of “inverted”, p-i-n configuration PSC contact layers with carbon top electrodes. We identify incompatibilities between common electron transport layers and the carbon electrode deposition process and previously unobserved semiconducting properties in carbon electrodes with unique implications for charge extraction and electronic behavior. To overcome these issues, we introduce a double-layer atomic layer deposited tin oxide (SnO2) and Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS), yielding up to 16.1% PCE and a retained 94% performance after 500 h of outdoor aging. The study is a crucial step forward for printable, metal-electrode-free, and evaporation-free perovskite PV technologies. |
| published_date |
2025-06-13T17:59:15Z |
| _version_ |
1850692134302121984 |
| score |
11.08899 |

