No Cover Image

Journal article 334 views 100 downloads

Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes

Tino Lukas Orcid Logo, Seongrok Seo Orcid Logo, Philippe Holzhey Orcid Logo, Katherine Stewart, Charlie Henderson Orcid Logo, Lukas Wagner Orcid Logo, David Beynon Orcid Logo, Trystan Watson Orcid Logo, Ji-Seon Kim Orcid Logo, Markus Kohlstädt Orcid Logo, Henry J. Snaith Orcid Logo

ACS Energy Letters, Volume: 10, Issue: 6, Pages: 2736 - 2742

Swansea University Authors: David Beynon Orcid Logo, Trystan Watson Orcid Logo

  • nz4c03403.pdf

    PDF | Version of Record

    © 2025 The Authors. This article is licensed under CC-BY 4.0.

    Download (2.43MB)

Abstract

Perovskite solar cells achieve high power conversion efficiencies but usually rely on vacuum-deposited metallic contacts, leading to high material costs for noble metals and stability issues for more reactive metals. Carbon-based materials offer a cost-effective and potentially more stable alternati...

Full description

Published in: ACS Energy Letters
ISSN: 2380-8195 2380-8195
Published: American Chemical Society 2025
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa69746
first_indexed 2025-06-16T13:30:36Z
last_indexed 2025-06-17T05:24:32Z
id cronfa69746
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-06-16T14:31:52.7195167</datestamp><bib-version>v2</bib-version><id>69746</id><entry>2025-06-16</entry><title>Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes</title><swanseaauthors><author><sid>f5cf40043658d0b8a747ef6224019939</sid><ORCID>0000-0002-8189-9489</ORCID><firstname>David</firstname><surname>Beynon</surname><name>David Beynon</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-06-16</date><deptcode>EAAS</deptcode><abstract>Perovskite solar cells achieve high power conversion efficiencies but usually rely on vacuum-deposited metallic contacts, leading to high material costs for noble metals and stability issues for more reactive metals. Carbon-based materials offer a cost-effective and potentially more stable alternative. The vast majority of carbon-electrode PSCs use the negative-intrinsic-positive (n-i-p) or &#x201C;hole-transport-layer-free&#x201D; architectures. Here, we present a systematic study to assess the compatibility of &#x201C;inverted&#x201D;, p-i-n configuration PSC contact layers with carbon top electrodes. We identify incompatibilities between common electron transport layers and the carbon electrode deposition process and previously unobserved semiconducting properties in carbon electrodes with unique implications for charge extraction and electronic behavior. To overcome these issues, we introduce a double-layer atomic layer deposited tin oxide (SnO2) and Poly&#xAD;(2,3-dihydrothieno-1,4-dioxin)-poly&#xAD;(styrenesulfonate) (PEDOT:PSS), yielding up to 16.1% PCE and a retained 94% performance after 500 h of outdoor aging. The study is a crucial step forward for printable, metal-electrode-free, and evaporation-free perovskite PV technologies.</abstract><type>Journal Article</type><journal>ACS Energy Letters</journal><volume>10</volume><journalNumber>6</journalNumber><paginationStart>2736</paginationStart><paginationEnd>2742</paginationEnd><publisher>American Chemical Society</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2380-8195</issnPrint><issnElectronic>2380-8195</issnElectronic><keywords/><publishedDay>13</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-06-13</publishedDate><doi>10.1021/acsenergylett.4c03403</doi><url/><notes>Letter</notes><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>This work was part funded by the EPSRC Programme Grant ATIP (Application Targeted and Integrated Photovoltaics) (EP/T028513/1) and the Perovskite solar cells with graphite electrodes: Advanced interfaces for highest performance and stability (PeroGAIN) project by Deutsche Forschungsgemeinschaft (DFG, SPP2196). We acknowledge the EPSRC National Thin Film Facility for Advanced Functional Materials (NTCF), hosted by the Department of Physics at the University of Oxford, and Dr Jin Yao, the facility engineer, for his support. The NTCF was funded by ESPRC (EP/M022900/1), the Wolfson Foundation and the University of Oxford.</funders><projectreference/><lastEdited>2025-06-16T14:31:52.7195167</lastEdited><Created>2025-06-16T14:23:25.7099698</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Tino</firstname><surname>Lukas</surname><orcid>0000-0003-0277-4838</orcid><order>1</order></author><author><firstname>Seongrok</firstname><surname>Seo</surname><orcid>0009-0000-6032-2747</orcid><order>2</order></author><author><firstname>Philippe</firstname><surname>Holzhey</surname><orcid>0000-0003-3688-1607</orcid><order>3</order></author><author><firstname>Katherine</firstname><surname>Stewart</surname><order>4</order></author><author><firstname>Charlie</firstname><surname>Henderson</surname><orcid>0000-0003-3060-5329</orcid><order>5</order></author><author><firstname>Lukas</firstname><surname>Wagner</surname><orcid>0000-0002-6883-5886</orcid><order>6</order></author><author><firstname>David</firstname><surname>Beynon</surname><orcid>0000-0002-8189-9489</orcid><order>7</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>8</order></author><author><firstname>Ji-Seon</firstname><surname>Kim</surname><orcid>0000-0003-4715-3656</orcid><order>9</order></author><author><firstname>Markus</firstname><surname>Kohlsta&#x308;dt</surname><orcid>0000-0002-9399-466X</orcid><order>10</order></author><author><firstname>Henry J.</firstname><surname>Snaith</surname><orcid>0000-0001-8511-790X</orcid><order>11</order></author></authors><documents><document><filename>69746__34490__4770f0f3024d40648afd51d21b754855.pdf</filename><originalFilename>nz4c03403.pdf</originalFilename><uploaded>2025-06-16T14:23:25.6738438</uploaded><type>Output</type><contentLength>2552276</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2025 The Authors. This article is licensed under CC-BY 4.0.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-06-16T14:31:52.7195167 v2 69746 2025-06-16 Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes f5cf40043658d0b8a747ef6224019939 0000-0002-8189-9489 David Beynon David Beynon true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 2025-06-16 EAAS Perovskite solar cells achieve high power conversion efficiencies but usually rely on vacuum-deposited metallic contacts, leading to high material costs for noble metals and stability issues for more reactive metals. Carbon-based materials offer a cost-effective and potentially more stable alternative. The vast majority of carbon-electrode PSCs use the negative-intrinsic-positive (n-i-p) or “hole-transport-layer-free” architectures. Here, we present a systematic study to assess the compatibility of “inverted”, p-i-n configuration PSC contact layers with carbon top electrodes. We identify incompatibilities between common electron transport layers and the carbon electrode deposition process and previously unobserved semiconducting properties in carbon electrodes with unique implications for charge extraction and electronic behavior. To overcome these issues, we introduce a double-layer atomic layer deposited tin oxide (SnO2) and Poly­(2,3-dihydrothieno-1,4-dioxin)-poly­(styrenesulfonate) (PEDOT:PSS), yielding up to 16.1% PCE and a retained 94% performance after 500 h of outdoor aging. The study is a crucial step forward for printable, metal-electrode-free, and evaporation-free perovskite PV technologies. Journal Article ACS Energy Letters 10 6 2736 2742 American Chemical Society 2380-8195 2380-8195 13 6 2025 2025-06-13 10.1021/acsenergylett.4c03403 Letter COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University Another institution paid the OA fee This work was part funded by the EPSRC Programme Grant ATIP (Application Targeted and Integrated Photovoltaics) (EP/T028513/1) and the Perovskite solar cells with graphite electrodes: Advanced interfaces for highest performance and stability (PeroGAIN) project by Deutsche Forschungsgemeinschaft (DFG, SPP2196). We acknowledge the EPSRC National Thin Film Facility for Advanced Functional Materials (NTCF), hosted by the Department of Physics at the University of Oxford, and Dr Jin Yao, the facility engineer, for his support. The NTCF was funded by ESPRC (EP/M022900/1), the Wolfson Foundation and the University of Oxford. 2025-06-16T14:31:52.7195167 2025-06-16T14:23:25.7099698 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Tino Lukas 0000-0003-0277-4838 1 Seongrok Seo 0009-0000-6032-2747 2 Philippe Holzhey 0000-0003-3688-1607 3 Katherine Stewart 4 Charlie Henderson 0000-0003-3060-5329 5 Lukas Wagner 0000-0002-6883-5886 6 David Beynon 0000-0002-8189-9489 7 Trystan Watson 0000-0002-8015-1436 8 Ji-Seon Kim 0000-0003-4715-3656 9 Markus Kohlstädt 0000-0002-9399-466X 10 Henry J. Snaith 0000-0001-8511-790X 11 69746__34490__4770f0f3024d40648afd51d21b754855.pdf nz4c03403.pdf 2025-06-16T14:23:25.6738438 Output 2552276 application/pdf Version of Record true © 2025 The Authors. This article is licensed under CC-BY 4.0. true eng https://creativecommons.org/licenses/by/4.0/
title Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes
spellingShingle Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes
David Beynon
Trystan Watson
title_short Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes
title_full Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes
title_fullStr Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes
title_full_unstemmed Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes
title_sort Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes
author_id_str_mv f5cf40043658d0b8a747ef6224019939
a210327b52472cfe8df9b8108d661457
author_id_fullname_str_mv f5cf40043658d0b8a747ef6224019939_***_David Beynon
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
author David Beynon
Trystan Watson
author2 Tino Lukas
Seongrok Seo
Philippe Holzhey
Katherine Stewart
Charlie Henderson
Lukas Wagner
David Beynon
Trystan Watson
Ji-Seon Kim
Markus Kohlstädt
Henry J. Snaith
format Journal article
container_title ACS Energy Letters
container_volume 10
container_issue 6
container_start_page 2736
publishDate 2025
institution Swansea University
issn 2380-8195
2380-8195
doi_str_mv 10.1021/acsenergylett.4c03403
publisher American Chemical Society
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description Perovskite solar cells achieve high power conversion efficiencies but usually rely on vacuum-deposited metallic contacts, leading to high material costs for noble metals and stability issues for more reactive metals. Carbon-based materials offer a cost-effective and potentially more stable alternative. The vast majority of carbon-electrode PSCs use the negative-intrinsic-positive (n-i-p) or “hole-transport-layer-free” architectures. Here, we present a systematic study to assess the compatibility of “inverted”, p-i-n configuration PSC contact layers with carbon top electrodes. We identify incompatibilities between common electron transport layers and the carbon electrode deposition process and previously unobserved semiconducting properties in carbon electrodes with unique implications for charge extraction and electronic behavior. To overcome these issues, we introduce a double-layer atomic layer deposited tin oxide (SnO2) and Poly­(2,3-dihydrothieno-1,4-dioxin)-poly­(styrenesulfonate) (PEDOT:PSS), yielding up to 16.1% PCE and a retained 94% performance after 500 h of outdoor aging. The study is a crucial step forward for printable, metal-electrode-free, and evaporation-free perovskite PV technologies.
published_date 2025-06-13T17:59:15Z
_version_ 1850692134302121984
score 11.08899