Conference Paper/Proceeding/Abstract 91 views 24 downloads
Identifying patterns, inequalities, and opportunities in adult social care through national linked data insights
Jonathan Scourfield,
Fiona Lugg-Widger,
Ashley Akbari
,
Rebecca Cannings-John,
Matt Curds,
Jose-Luis Fernandez,
Mel Meindl,
Lisa Trigg,
Nell Warner,
Paul Willis,
Miranda Evans,
Oliver Cumming,
Julie Wych
International Journal of Population Data Science, Volume: 10, Issue: 4
Swansea University Author:
Ashley Akbari
DOI (Published version): 10.23889/ijpds.v10i4.3091
Abstract
Identifying patterns, inequalities, and opportunities in adult social care through national linked data insights
| Published in: | International Journal of Population Data Science |
|---|---|
| ISSN: | 2399-4908 |
| Published: |
Swansea University
2025
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa70536 |
| first_indexed |
2025-09-29T22:01:38Z |
|---|---|
| last_indexed |
2025-10-07T04:21:40Z |
| id |
cronfa70536 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-10-06T14:35:26.9119288</datestamp><bib-version>v2</bib-version><id>70536</id><entry>2025-09-29</entry><title>Identifying patterns, inequalities, and opportunities in adult social care through national linked data insights</title><swanseaauthors><author><sid>aa1b025ec0243f708bb5eb0a93d6fb52</sid><ORCID>0000-0003-0814-0801</ORCID><firstname>Ashley</firstname><surname>Akbari</surname><name>Ashley Akbari</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-09-29</date><deptcode>MEDS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>International Journal of Population Data Science</journal><volume>10</volume><journalNumber>4</journalNumber><paginationStart/><paginationEnd/><publisher>Swansea University</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2399-4908</issnElectronic><keywords/><publishedDay>28</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-08-28</publishedDate><doi>10.23889/ijpds.v10i4.3091</doi><url/><notes>Abstract</notes><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2025-10-06T14:35:26.9119288</lastEdited><Created>2025-09-29T21:08:35.9845397</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Health Data Science</level></path><authors><author><firstname>Jonathan</firstname><surname>Scourfield</surname><order>1</order></author><author><firstname>Fiona</firstname><surname>Lugg-Widger</surname><order>2</order></author><author><firstname>Ashley</firstname><surname>Akbari</surname><orcid>0000-0003-0814-0801</orcid><order>3</order></author><author><firstname>Rebecca</firstname><surname>Cannings-John</surname><order>4</order></author><author><firstname>Matt</firstname><surname>Curds</surname><order>5</order></author><author><firstname>Jose-Luis</firstname><surname>Fernandez</surname><order>6</order></author><author><firstname>Mel</firstname><surname>Meindl</surname><order>7</order></author><author><firstname>Lisa</firstname><surname>Trigg</surname><order>8</order></author><author><firstname>Nell</firstname><surname>Warner</surname><order>9</order></author><author><firstname>Paul</firstname><surname>Willis</surname><order>10</order></author><author><firstname>Miranda</firstname><surname>Evans</surname><order>11</order></author><author><firstname>Oliver</firstname><surname>Cumming</surname><order>12</order></author><author><firstname>Julie</firstname><surname>Wych</surname><order>13</order></author></authors><documents><document><filename>70536__35260__440be5af331b4da1bbf4b7055cde7140.pdf</filename><originalFilename>70536.VoR.pdf</originalFilename><uploaded>2025-10-06T14:33:46.6931670</uploaded><type>Output</type><contentLength>192594</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>©The Authors. Open Access under CC BY 4.0 license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-10-06T14:35:26.9119288 v2 70536 2025-09-29 Identifying patterns, inequalities, and opportunities in adult social care through national linked data insights aa1b025ec0243f708bb5eb0a93d6fb52 0000-0003-0814-0801 Ashley Akbari Ashley Akbari true false 2025-09-29 MEDS Conference Paper/Proceeding/Abstract International Journal of Population Data Science 10 4 Swansea University 2399-4908 28 8 2025 2025-08-28 10.23889/ijpds.v10i4.3091 Abstract COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University 2025-10-06T14:35:26.9119288 2025-09-29T21:08:35.9845397 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Health Data Science Jonathan Scourfield 1 Fiona Lugg-Widger 2 Ashley Akbari 0000-0003-0814-0801 3 Rebecca Cannings-John 4 Matt Curds 5 Jose-Luis Fernandez 6 Mel Meindl 7 Lisa Trigg 8 Nell Warner 9 Paul Willis 10 Miranda Evans 11 Oliver Cumming 12 Julie Wych 13 70536__35260__440be5af331b4da1bbf4b7055cde7140.pdf 70536.VoR.pdf 2025-10-06T14:33:46.6931670 Output 192594 application/pdf Version of Record true ©The Authors. Open Access under CC BY 4.0 license. true eng https://creativecommons.org/licenses/by/4.0/deed.en |
| title |
Identifying patterns, inequalities, and opportunities in adult social care through national linked data insights |
| spellingShingle |
Identifying patterns, inequalities, and opportunities in adult social care through national linked data insights Ashley Akbari |
| title_short |
Identifying patterns, inequalities, and opportunities in adult social care through national linked data insights |
| title_full |
Identifying patterns, inequalities, and opportunities in adult social care through national linked data insights |
| title_fullStr |
Identifying patterns, inequalities, and opportunities in adult social care through national linked data insights |
| title_full_unstemmed |
Identifying patterns, inequalities, and opportunities in adult social care through national linked data insights |
| title_sort |
Identifying patterns, inequalities, and opportunities in adult social care through national linked data insights |
| author_id_str_mv |
aa1b025ec0243f708bb5eb0a93d6fb52 |
| author_id_fullname_str_mv |
aa1b025ec0243f708bb5eb0a93d6fb52_***_Ashley Akbari |
| author |
Ashley Akbari |
| author2 |
Jonathan Scourfield Fiona Lugg-Widger Ashley Akbari Rebecca Cannings-John Matt Curds Jose-Luis Fernandez Mel Meindl Lisa Trigg Nell Warner Paul Willis Miranda Evans Oliver Cumming Julie Wych |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
International Journal of Population Data Science |
| container_volume |
10 |
| container_issue |
4 |
| publishDate |
2025 |
| institution |
Swansea University |
| issn |
2399-4908 |
| doi_str_mv |
10.23889/ijpds.v10i4.3091 |
| publisher |
Swansea University |
| college_str |
Faculty of Medicine, Health and Life Sciences |
| hierarchytype |
|
| hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
| hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
| hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
| hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
| department_str |
Swansea University Medical School - Health Data Science{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Health Data Science |
| document_store_str |
1 |
| active_str |
0 |
| published_date |
2025-08-28T07:53:03Z |
| _version_ |
1850744591780675584 |
| score |
11.08895 |

