No Cover Image

Conference contribution 361 views

Anisotropic schrodinger equation quantum corrections for 3D Monte Carlo simulations of nanoscale multigate transistors / Muhammad A. Elmessary; Daniel Nagy; Manuel Aldegunde; Jari Lindberg; Wulf Dettmer; Djordje Peric; Antonio J. Garcıa-Loureiro; Karol Kalna

2015 International Workshop on Computational Electronics (IWCE), Pages: 1 - 4

Swansea University Author: Peric, Djordje

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.1109/IWCE.2015.7301956

Abstract

We incorporated anisotropic 2D Schrodinger equation based quantum corrections (SEQC) that depends on valley orientation into a 3D Finite Element (FE) Monte Carlo (MC) simulation toolbox. The MC toolbox was tested against experimental ID-VG characteristics of the 22 nm gate length GAA Si nanowire (NW...

Full description

Published in: 2015 International Workshop on Computational Electronics (IWCE)
Published: 2015
URI: https://cronfa.swan.ac.uk/Record/cronfa24726
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2015-11-25T01:59:46Z
last_indexed 2018-02-09T05:04:48Z
id cronfa24726
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2015-11-24T20:39:58Z</datestamp><bib-version>v2</bib-version><id>24726</id><entry>2015-11-24</entry><title>Anisotropic schrodinger equation quantum corrections for 3D Monte Carlo simulations of nanoscale multigate transistors</title><alternativeTitle></alternativeTitle><author>Djordje Peric</author><firstname>Djordje</firstname><surname>Peric</surname><active>true</active><ORCID>0000-0002-1112-301X</ORCID><ethesisStudent>false</ethesisStudent><sid>9d35cb799b2542ad39140943a9a9da65</sid><email>f54c640234530a465e8038feff3992a8</email><emailaddr>61jmEdjcBOLoRLV4GDC4UYJSbZF11mHm1K8NtCGVMYw=</emailaddr><date>2015-11-24</date><deptcode>EEN</deptcode><abstract>We incorporated anisotropic 2D Schrodinger equation based quantum corrections (SEQC) that depends on valley orientation into a 3D Finite Element (FE) Monte Carlo (MC) simulation toolbox. The MC toolbox was tested against experimental ID-VG characteristics of the 22 nm gate length GAA Si nanowire (NW) with excellent agreement at both low and high drain biases. We then scaled the Si GAA NW according to the ITRS specifications to a gate length of 10 nm. To show the effect of anisotropic QC on the ID-VG characteristics, we simulate two 8:1 nm gate length FinFETs, rectangular-like (REC) and triangular-like (TRI), with the &amp;#60;;100&amp;#62; and &#x3008;100&#x3009; channel orientations. The QC anisotropy effect is more pronounced in the &#x3008;100&#x3009; channel TRI device increasing the drain current by about 13% and slightly decreasing the current by 2% in the &#x3008;100&#x3009; channel REC device. However, the QC anisotropy has negligible effect in any device in the &#x3008;100&#x3009; orientation.</abstract><type>Conference contribution</type><journal>2015 International Workshop on Computational Electronics (IWCE)</journal><volume/><journalNumber/><paginationStart>1</paginationStart><paginationEnd>4</paginationEnd><publisher></publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords></keywords><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-01-01</publishedDate><doi>10.1109/IWCE.2015.7301956</doi><url></url><notes></notes><college>College of Engineering</college><department>Engineering</department><CollegeCode>CENG</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution/><researchGroup>None</researchGroup><supervisor/><sponsorsfunders/><grantnumber/><degreelevel/><degreename>None</degreename><lastEdited>2015-11-24T20:39:58Z</lastEdited><Created>2015-11-24T20:15:45Z</Created><path><level id="1">College of Engineering</level><level id="2">Engineering</level></path><authors><author><firstname>Muhammad A.</firstname><surname>Elmessary</surname><orcid/><order>1</order></author><author><firstname>Daniel</firstname><surname>Nagy</surname><orcid/><order>2</order></author><author><firstname>Manuel</firstname><surname>Aldegunde</surname><orcid/><order>3</order></author><author><firstname>Jari</firstname><surname>Lindberg</surname><orcid/><order>4</order></author><author><firstname>Wulf</firstname><surname>Dettmer</surname><orcid/><order>5</order></author><author><firstname>Djordje</firstname><surname>Peric</surname><orcid/><order>6</order></author><author><firstname>Antonio J.</firstname><surname>Garc&#x131;a-Loureiro</surname><orcid/><order>7</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid/><order>8</order></author></authors><documents/></rfc1807>
spelling 2015-11-24T20:39:58Z v2 24726 2015-11-24 Anisotropic schrodinger equation quantum corrections for 3D Monte Carlo simulations of nanoscale multigate transistors Djordje Peric Djordje Peric true 0000-0002-1112-301X false 9d35cb799b2542ad39140943a9a9da65 f54c640234530a465e8038feff3992a8 61jmEdjcBOLoRLV4GDC4UYJSbZF11mHm1K8NtCGVMYw= 2015-11-24 EEN We incorporated anisotropic 2D Schrodinger equation based quantum corrections (SEQC) that depends on valley orientation into a 3D Finite Element (FE) Monte Carlo (MC) simulation toolbox. The MC toolbox was tested against experimental ID-VG characteristics of the 22 nm gate length GAA Si nanowire (NW) with excellent agreement at both low and high drain biases. We then scaled the Si GAA NW according to the ITRS specifications to a gate length of 10 nm. To show the effect of anisotropic QC on the ID-VG characteristics, we simulate two 8:1 nm gate length FinFETs, rectangular-like (REC) and triangular-like (TRI), with the &#60;;100&#62; and 〈100〉 channel orientations. The QC anisotropy effect is more pronounced in the 〈100〉 channel TRI device increasing the drain current by about 13% and slightly decreasing the current by 2% in the 〈100〉 channel REC device. However, the QC anisotropy has negligible effect in any device in the 〈100〉 orientation. Conference contribution 2015 International Workshop on Computational Electronics (IWCE) 1 4 0 0 2015 2015-01-01 10.1109/IWCE.2015.7301956 College of Engineering Engineering CENG EEN None None 2015-11-24T20:39:58Z 2015-11-24T20:15:45Z College of Engineering Engineering Muhammad A. Elmessary 1 Daniel Nagy 2 Manuel Aldegunde 3 Jari Lindberg 4 Wulf Dettmer 5 Djordje Peric 6 Antonio J. Garcıa-Loureiro 7 Karol Kalna 8
title Anisotropic schrodinger equation quantum corrections for 3D Monte Carlo simulations of nanoscale multigate transistors
spellingShingle Anisotropic schrodinger equation quantum corrections for 3D Monte Carlo simulations of nanoscale multigate transistors
Peric, Djordje
title_short Anisotropic schrodinger equation quantum corrections for 3D Monte Carlo simulations of nanoscale multigate transistors
title_full Anisotropic schrodinger equation quantum corrections for 3D Monte Carlo simulations of nanoscale multigate transistors
title_fullStr Anisotropic schrodinger equation quantum corrections for 3D Monte Carlo simulations of nanoscale multigate transistors
title_full_unstemmed Anisotropic schrodinger equation quantum corrections for 3D Monte Carlo simulations of nanoscale multigate transistors
title_sort Anisotropic schrodinger equation quantum corrections for 3D Monte Carlo simulations of nanoscale multigate transistors
author_id_str_mv 9d35cb799b2542ad39140943a9a9da65
author_id_fullname_str_mv 9d35cb799b2542ad39140943a9a9da65_***_Peric, Djordje
author Peric, Djordje
author2 Muhammad A. Elmessary
Daniel Nagy
Manuel Aldegunde
Jari Lindberg
Wulf Dettmer
Djordje Peric
Antonio J. Garcıa-Loureiro
Karol Kalna
format Conference contribution
container_title 2015 International Workshop on Computational Electronics (IWCE)
container_start_page 1
publishDate 2015
institution Swansea University
doi_str_mv 10.1109/IWCE.2015.7301956
college_str College of Engineering
hierarchytype
hierarchy_top_id collegeofengineering
hierarchy_top_title College of Engineering
hierarchy_parent_id collegeofengineering
hierarchy_parent_title College of Engineering
department_str Engineering{{{_:::_}}}College of Engineering{{{_:::_}}}Engineering
document_store_str 0
active_str 1
description We incorporated anisotropic 2D Schrodinger equation based quantum corrections (SEQC) that depends on valley orientation into a 3D Finite Element (FE) Monte Carlo (MC) simulation toolbox. The MC toolbox was tested against experimental ID-VG characteristics of the 22 nm gate length GAA Si nanowire (NW) with excellent agreement at both low and high drain biases. We then scaled the Si GAA NW according to the ITRS specifications to a gate length of 10 nm. To show the effect of anisotropic QC on the ID-VG characteristics, we simulate two 8:1 nm gate length FinFETs, rectangular-like (REC) and triangular-like (TRI), with the &#60;;100&#62; and 〈100〉 channel orientations. The QC anisotropy effect is more pronounced in the 〈100〉 channel TRI device increasing the drain current by about 13% and slightly decreasing the current by 2% in the 〈100〉 channel REC device. However, the QC anisotropy has negligible effect in any device in the 〈100〉 orientation.
published_date 2015-01-01T14:46:04Z
_version_ 1636867363815030784
score 10.821599