No Cover Image

Journal article 1268 views

3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides

Yuzheng Guo Orcid Logo, Dameng Liu, John Robertson

ACS Applied Materials & Interfaces, Volume: 7, Issue: 46, Pages: 25709 - 25715

Swansea University Author: Yuzheng Guo Orcid Logo

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.1021/acsami.5b06897

Abstract

The transition metal dichalcogenides (TMDs) are two-dimensional layered solids with van der Waals bonding between layers. We calculate their Schottky barrier heights (SBHs) using supercell models and density functional theory. It is found that the SBHs without defects are quite strongly pinned, with...

Full description

Published in: ACS Applied Materials & Interfaces
ISSN: 1944-8244 1944-8252
Published: 2015
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa32122
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The transition metal dichalcogenides (TMDs) are two-dimensional layered solids with van der Waals bonding between layers. We calculate their Schottky barrier heights (SBHs) using supercell models and density functional theory. It is found that the SBHs without defects are quite strongly pinned, with a pinning factor S of about S = 0.3, a similar value for both top and edge contact geometries. This arises because there is direct bonding between the contact metal atoms and the TMD chalcogen atoms, for both top and edge contact geometries, despite the weak interlayer bonding in the isolated materials. The Schottky barriers largely follow the metal induced gap state (MIGS) model, like those of three-dimensional semiconductors, despite the bonding in the TMDs being largely constrained within the layers. The pinning energies are found to be lower in the gap for edge contact geometries than for top contact geometries, which might be used to obtain p-type contacts on MoS2.
College: Faculty of Science and Engineering
Issue: 46
Start Page: 25709
End Page: 25715