No Cover Image

Journal article 1101 views 131 downloads

Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between

Othmar Moser, Jane E. Yardley, Richard Bracken Orcid Logo

Nutrients, Volume: 10, Issue: 1, Start page: 93

Swansea University Author: Richard Bracken Orcid Logo

Check full text

DOI (Published version): 10.3390/nu10010093

Abstract

Continuous and flash glucose monitoring systems measure interstitial fluid glucose concentrations within a body compartment that is dramatically altered by posture and is responsive to the physiological and metabolic changes that enable exercise performance in individuals with type 1 diabetes. Body...

Full description

Published in: Nutrients
ISSN: 2072-6643
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa38098
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-01-15T19:25:48Z
last_indexed 2018-03-06T14:12:34Z
id cronfa38098
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-03-06T12:45:01.8411211</datestamp><bib-version>v2</bib-version><id>38098</id><entry>2018-01-15</entry><title>Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between</title><swanseaauthors><author><sid>f5da81cd18adfdedb2ccb845bddc12f7</sid><ORCID>0000-0002-6986-6449</ORCID><firstname>Richard</firstname><surname>Bracken</surname><name>Richard Bracken</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-01-15</date><deptcode>STSC</deptcode><abstract>Continuous and flash glucose monitoring systems measure interstitial fluid glucose concentrations within a body compartment that is dramatically altered by posture and is responsive to the physiological and metabolic changes that enable exercise performance in individuals with type 1 diabetes. Body fluid redistribution within the interstitial compartment, alterations in interstitial fluid volume, changes in rate and direction of fluid flow between the vasculature, interstitium and lymphatics, as well as alterations in the rate of glucose production and uptake by exercising tissues, make for caution when interpreting device read-outs in a rapidly changing internal environment during acute exercise. We present an understanding of the physiological and metabolic changes taking place with acute exercise and detail the blood and interstitial glucose responses with different forms of exercise, namely sustained endurance, high-intensity, and strength exercises in individuals with type 1 diabetes. Further, we detail novel technical information on currently available patient devices. As more health services and insurance companies advocate their use, understanding continuous and flash glucose monitoring for its strengths and limitations may offer more confidence for patients aiming to manage glycemia around exercise.</abstract><type>Journal Article</type><journal>Nutrients</journal><volume>10</volume><journalNumber>1</journalNumber><paginationStart>93</paginationStart><publisher/><issnPrint>2072-6643</issnPrint><keywords>continuous glucose monitoring; flash glucose monitoring; exercise; interstitium</keywords><publishedDay>15</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-01-15</publishedDate><doi>10.3390/nu10010093</doi><url/><notes/><college>COLLEGE NANME</college><department>Sport and Exercise Sciences</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>STSC</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-03-06T12:45:01.8411211</lastEdited><Created>2018-01-15T09:11:05.9878430</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Sport and Exercise Sciences</level></path><authors><author><firstname>Othmar</firstname><surname>Moser</surname><order>1</order></author><author><firstname>Jane E.</firstname><surname>Yardley</surname><order>2</order></author><author><firstname>Richard</firstname><surname>Bracken</surname><orcid>0000-0002-6986-6449</orcid><order>3</order></author></authors><documents><document><filename>0038098-15012018091354.pdf</filename><originalFilename>moser2018.pdf</originalFilename><uploaded>2018-01-15T09:13:54.8430000</uploaded><type>Output</type><contentLength>475347</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-01-15T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2018-03-06T12:45:01.8411211 v2 38098 2018-01-15 Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between f5da81cd18adfdedb2ccb845bddc12f7 0000-0002-6986-6449 Richard Bracken Richard Bracken true false 2018-01-15 STSC Continuous and flash glucose monitoring systems measure interstitial fluid glucose concentrations within a body compartment that is dramatically altered by posture and is responsive to the physiological and metabolic changes that enable exercise performance in individuals with type 1 diabetes. Body fluid redistribution within the interstitial compartment, alterations in interstitial fluid volume, changes in rate and direction of fluid flow between the vasculature, interstitium and lymphatics, as well as alterations in the rate of glucose production and uptake by exercising tissues, make for caution when interpreting device read-outs in a rapidly changing internal environment during acute exercise. We present an understanding of the physiological and metabolic changes taking place with acute exercise and detail the blood and interstitial glucose responses with different forms of exercise, namely sustained endurance, high-intensity, and strength exercises in individuals with type 1 diabetes. Further, we detail novel technical information on currently available patient devices. As more health services and insurance companies advocate their use, understanding continuous and flash glucose monitoring for its strengths and limitations may offer more confidence for patients aiming to manage glycemia around exercise. Journal Article Nutrients 10 1 93 2072-6643 continuous glucose monitoring; flash glucose monitoring; exercise; interstitium 15 1 2018 2018-01-15 10.3390/nu10010093 COLLEGE NANME Sport and Exercise Sciences COLLEGE CODE STSC Swansea University 2018-03-06T12:45:01.8411211 2018-01-15T09:11:05.9878430 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Sport and Exercise Sciences Othmar Moser 1 Jane E. Yardley 2 Richard Bracken 0000-0002-6986-6449 3 0038098-15012018091354.pdf moser2018.pdf 2018-01-15T09:13:54.8430000 Output 475347 application/pdf Version of Record true 2018-01-15T00:00:00.0000000 true eng
title Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between
spellingShingle Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between
Richard Bracken
title_short Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between
title_full Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between
title_fullStr Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between
title_full_unstemmed Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between
title_sort Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between
author_id_str_mv f5da81cd18adfdedb2ccb845bddc12f7
author_id_fullname_str_mv f5da81cd18adfdedb2ccb845bddc12f7_***_Richard Bracken
author Richard Bracken
author2 Othmar Moser
Jane E. Yardley
Richard Bracken
format Journal article
container_title Nutrients
container_volume 10
container_issue 1
container_start_page 93
publishDate 2018
institution Swansea University
issn 2072-6643
doi_str_mv 10.3390/nu10010093
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Sport and Exercise Sciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Sport and Exercise Sciences
document_store_str 1
active_str 0
description Continuous and flash glucose monitoring systems measure interstitial fluid glucose concentrations within a body compartment that is dramatically altered by posture and is responsive to the physiological and metabolic changes that enable exercise performance in individuals with type 1 diabetes. Body fluid redistribution within the interstitial compartment, alterations in interstitial fluid volume, changes in rate and direction of fluid flow between the vasculature, interstitium and lymphatics, as well as alterations in the rate of glucose production and uptake by exercising tissues, make for caution when interpreting device read-outs in a rapidly changing internal environment during acute exercise. We present an understanding of the physiological and metabolic changes taking place with acute exercise and detail the blood and interstitial glucose responses with different forms of exercise, namely sustained endurance, high-intensity, and strength exercises in individuals with type 1 diabetes. Further, we detail novel technical information on currently available patient devices. As more health services and insurance companies advocate their use, understanding continuous and flash glucose monitoring for its strengths and limitations may offer more confidence for patients aiming to manage glycemia around exercise.
published_date 2018-01-15T03:48:08Z
_version_ 1763752320678494208
score 10.999207