No Cover Image

Journal article 402 views 203 downloads

Characterization of pulp derived nanocellulose hydrogels using AVAP® technology

Stuart Kyle, Zita M. Jessop, Ayesha Al-Sabah, Karl Hawkins Orcid Logo, Aled Lewis, Thierry Maffeis Orcid Logo, Cecile Charbonneau Orcid Logo, Andrea Gazze, Lewis Francis Orcid Logo, Mikhail Iakovlev, Kim Nelson, Stephen J. Eichhorn, Iain S. Whitaker

Carbohydrate Polymers, Volume: 198, Pages: 270 - 280

Swansea University Authors: Karl Hawkins Orcid Logo, Thierry Maffeis Orcid Logo, Cecile Charbonneau Orcid Logo, Lewis Francis Orcid Logo

Abstract

Bioinspiration from hierarchical structures found in natural environments has heralded a new age of advanced functional materials. Nanocellulose has received significant attention due to the demand for high-performance materials with tailored mechanical, physical and biological properties. In this s...

Full description

Published in: Carbohydrate Polymers
ISSN: 0144-8617
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa40840
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-06-28T13:30:38Z
last_indexed 2018-11-26T20:12:19Z
id cronfa40840
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-11-26T14:31:17.1019563</datestamp><bib-version>v2</bib-version><id>40840</id><entry>2018-06-28</entry><title>Characterization of pulp derived nanocellulose hydrogels using AVAP&#xAE; technology</title><swanseaauthors><author><sid>77c39404a9a98c6e2283d84815cba053</sid><ORCID>0000-0003-0174-4151</ORCID><firstname>Karl</firstname><surname>Hawkins</surname><name>Karl Hawkins</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>992eb4cb18b61c0cd3da6e0215ac787c</sid><ORCID>0000-0003-2357-0092</ORCID><firstname>Thierry</firstname><surname>Maffeis</surname><name>Thierry Maffeis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4dc059714847cb22ed922ab058950560</sid><ORCID>0000-0001-9887-2007</ORCID><firstname>Cecile</firstname><surname>Charbonneau</surname><name>Cecile Charbonneau</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>10f61f9c1248951c1a33f6a89498f37d</sid><ORCID>0000-0002-7803-7714</ORCID><firstname>Lewis</firstname><surname>Francis</surname><name>Lewis Francis</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-06-28</date><deptcode>BMS</deptcode><abstract>Bioinspiration from hierarchical structures found in natural environments has heralded a new age of advanced functional materials. Nanocellulose has received significant attention due to the demand for high-performance materials with tailored mechanical, physical and biological properties. In this study, nanocellulose fibrils, nanocrystals and a novel mixture of fibrils and nanocrystals (blend) were prepared from softwood biomass using the AVAP&#xAE; biorefinery technology. These materials were characterized using transmission and scanning electron microscopy, and atomic force microscopy. This analysis revealed a nano- and microarchitecture with extensive porosity. Notable differences included the nanocrystals exhibiting a compact packing of nanorods with reduced porosity. The NC blend exhibited porous fibrillar networks with interconnecting compact nanorods. Fourier transform infrared spectroscopy and X-ray diffraction confirmed a pure cellulose I structure. Thermal studies highlighted the excellent stability of all three NC materials with the nanocrystals having the highest decomposition temperature. Surface charge analysis revealed stable colloid suspensions. Rheological studies highlighted a dominance of elasticity in all variants, with the NC blend being more rigid than the NC fibrils and nanocrystals, indicating a double network hydrogel structure. Given these properties, it is thought that these materials show great potential in (bio)nanomaterial applications where careful control of microarchitecture, surface topography and porosity are required.</abstract><type>Journal Article</type><journal>Carbohydrate Polymers</journal><volume>198</volume><paginationStart>270</paginationStart><paginationEnd>280</paginationEnd><publisher/><issnPrint>0144-8617</issnPrint><keywords>Nanocellulose; Nanofibrils; Nanocrystals; Blends; Characterization</keywords><publishedDay>15</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-10-15</publishedDate><doi>10.1016/j.carbpol.2018.06.091</doi><url/><notes/><college>COLLEGE NANME</college><department>Biomedical Sciences</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BMS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-11-26T14:31:17.1019563</lastEdited><Created>2018-06-28T11:00:38.4358125</Created><path><level id="1">College of Engineering</level><level id="2">Engineering</level></path><authors><author><firstname>Stuart</firstname><surname>Kyle</surname><order>1</order></author><author><firstname>Zita M.</firstname><surname>Jessop</surname><order>2</order></author><author><firstname>Ayesha</firstname><surname>Al-Sabah</surname><order>3</order></author><author><firstname>Karl</firstname><surname>Hawkins</surname><orcid>0000-0003-0174-4151</orcid><order>4</order></author><author><firstname>Aled</firstname><surname>Lewis</surname><order>5</order></author><author><firstname>Thierry</firstname><surname>Maffeis</surname><orcid>0000-0003-2357-0092</orcid><order>6</order></author><author><firstname>Cecile</firstname><surname>Charbonneau</surname><orcid>0000-0001-9887-2007</orcid><order>7</order></author><author><firstname>Andrea</firstname><surname>Gazze</surname><order>8</order></author><author><firstname>Lewis</firstname><surname>Francis</surname><orcid>0000-0002-7803-7714</orcid><order>9</order></author><author><firstname>Mikhail</firstname><surname>Iakovlev</surname><order>10</order></author><author><firstname>Kim</firstname><surname>Nelson</surname><order>11</order></author><author><firstname>Stephen J.</firstname><surname>Eichhorn</surname><order>12</order></author><author><firstname>Iain S.</firstname><surname>Whitaker</surname><order>13</order></author></authors><documents><document><filename>0040840-04092018103451.pdf</filename><originalFilename>kyle2018.pdf</originalFilename><uploaded>2018-09-04T10:34:51.2900000</uploaded><type>Output</type><contentLength>2116491</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-06-22T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2018-11-26T14:31:17.1019563 v2 40840 2018-06-28 Characterization of pulp derived nanocellulose hydrogels using AVAP® technology 77c39404a9a98c6e2283d84815cba053 0000-0003-0174-4151 Karl Hawkins Karl Hawkins true false 992eb4cb18b61c0cd3da6e0215ac787c 0000-0003-2357-0092 Thierry Maffeis Thierry Maffeis true false 4dc059714847cb22ed922ab058950560 0000-0001-9887-2007 Cecile Charbonneau Cecile Charbonneau true false 10f61f9c1248951c1a33f6a89498f37d 0000-0002-7803-7714 Lewis Francis Lewis Francis true false 2018-06-28 BMS Bioinspiration from hierarchical structures found in natural environments has heralded a new age of advanced functional materials. Nanocellulose has received significant attention due to the demand for high-performance materials with tailored mechanical, physical and biological properties. In this study, nanocellulose fibrils, nanocrystals and a novel mixture of fibrils and nanocrystals (blend) were prepared from softwood biomass using the AVAP® biorefinery technology. These materials were characterized using transmission and scanning electron microscopy, and atomic force microscopy. This analysis revealed a nano- and microarchitecture with extensive porosity. Notable differences included the nanocrystals exhibiting a compact packing of nanorods with reduced porosity. The NC blend exhibited porous fibrillar networks with interconnecting compact nanorods. Fourier transform infrared spectroscopy and X-ray diffraction confirmed a pure cellulose I structure. Thermal studies highlighted the excellent stability of all three NC materials with the nanocrystals having the highest decomposition temperature. Surface charge analysis revealed stable colloid suspensions. Rheological studies highlighted a dominance of elasticity in all variants, with the NC blend being more rigid than the NC fibrils and nanocrystals, indicating a double network hydrogel structure. Given these properties, it is thought that these materials show great potential in (bio)nanomaterial applications where careful control of microarchitecture, surface topography and porosity are required. Journal Article Carbohydrate Polymers 198 270 280 0144-8617 Nanocellulose; Nanofibrils; Nanocrystals; Blends; Characterization 15 10 2018 2018-10-15 10.1016/j.carbpol.2018.06.091 COLLEGE NANME Biomedical Sciences COLLEGE CODE BMS Swansea University 2018-11-26T14:31:17.1019563 2018-06-28T11:00:38.4358125 College of Engineering Engineering Stuart Kyle 1 Zita M. Jessop 2 Ayesha Al-Sabah 3 Karl Hawkins 0000-0003-0174-4151 4 Aled Lewis 5 Thierry Maffeis 0000-0003-2357-0092 6 Cecile Charbonneau 0000-0001-9887-2007 7 Andrea Gazze 8 Lewis Francis 0000-0002-7803-7714 9 Mikhail Iakovlev 10 Kim Nelson 11 Stephen J. Eichhorn 12 Iain S. Whitaker 13 0040840-04092018103451.pdf kyle2018.pdf 2018-09-04T10:34:51.2900000 Output 2116491 application/pdf Accepted Manuscript true 2019-06-22T00:00:00.0000000 true eng
title Characterization of pulp derived nanocellulose hydrogels using AVAP® technology
spellingShingle Characterization of pulp derived nanocellulose hydrogels using AVAP® technology
Karl Hawkins
Thierry Maffeis
Cecile Charbonneau
Lewis Francis
title_short Characterization of pulp derived nanocellulose hydrogels using AVAP® technology
title_full Characterization of pulp derived nanocellulose hydrogels using AVAP® technology
title_fullStr Characterization of pulp derived nanocellulose hydrogels using AVAP® technology
title_full_unstemmed Characterization of pulp derived nanocellulose hydrogels using AVAP® technology
title_sort Characterization of pulp derived nanocellulose hydrogels using AVAP® technology
author_id_str_mv 77c39404a9a98c6e2283d84815cba053
992eb4cb18b61c0cd3da6e0215ac787c
4dc059714847cb22ed922ab058950560
10f61f9c1248951c1a33f6a89498f37d
author_id_fullname_str_mv 77c39404a9a98c6e2283d84815cba053_***_Karl Hawkins
992eb4cb18b61c0cd3da6e0215ac787c_***_Thierry Maffeis
4dc059714847cb22ed922ab058950560_***_Cecile Charbonneau
10f61f9c1248951c1a33f6a89498f37d_***_Lewis Francis
author Karl Hawkins
Thierry Maffeis
Cecile Charbonneau
Lewis Francis
author2 Stuart Kyle
Zita M. Jessop
Ayesha Al-Sabah
Karl Hawkins
Aled Lewis
Thierry Maffeis
Cecile Charbonneau
Andrea Gazze
Lewis Francis
Mikhail Iakovlev
Kim Nelson
Stephen J. Eichhorn
Iain S. Whitaker
format Journal article
container_title Carbohydrate Polymers
container_volume 198
container_start_page 270
publishDate 2018
institution Swansea University
issn 0144-8617
doi_str_mv 10.1016/j.carbpol.2018.06.091
college_str College of Engineering
hierarchytype
hierarchy_top_id collegeofengineering
hierarchy_top_title College of Engineering
hierarchy_parent_id collegeofengineering
hierarchy_parent_title College of Engineering
department_str Engineering{{{_:::_}}}College of Engineering{{{_:::_}}}Engineering
document_store_str 1
active_str 0
description Bioinspiration from hierarchical structures found in natural environments has heralded a new age of advanced functional materials. Nanocellulose has received significant attention due to the demand for high-performance materials with tailored mechanical, physical and biological properties. In this study, nanocellulose fibrils, nanocrystals and a novel mixture of fibrils and nanocrystals (blend) were prepared from softwood biomass using the AVAP® biorefinery technology. These materials were characterized using transmission and scanning electron microscopy, and atomic force microscopy. This analysis revealed a nano- and microarchitecture with extensive porosity. Notable differences included the nanocrystals exhibiting a compact packing of nanorods with reduced porosity. The NC blend exhibited porous fibrillar networks with interconnecting compact nanorods. Fourier transform infrared spectroscopy and X-ray diffraction confirmed a pure cellulose I structure. Thermal studies highlighted the excellent stability of all three NC materials with the nanocrystals having the highest decomposition temperature. Surface charge analysis revealed stable colloid suspensions. Rheological studies highlighted a dominance of elasticity in all variants, with the NC blend being more rigid than the NC fibrils and nanocrystals, indicating a double network hydrogel structure. Given these properties, it is thought that these materials show great potential in (bio)nanomaterial applications where careful control of microarchitecture, surface topography and porosity are required.
published_date 2018-10-15T03:55:13Z
_version_ 1737026660725686272
score 10.8793745