No Cover Image

Conference Paper/Proceeding/Abstract 1276 views 204 downloads

Element-free multiscale modeling of large deformation behavior of red blood cell membrane with malaria infection

A. S. Ademiloye, L. W. Zhang, K. M. Liew, Adesola Ademiloye Orcid Logo

Proceedings of the 5th International Conference on Computational and Mathematical Biomedical Engineering (CMBE2017), Pages: 316 - 319

Swansea University Author: Adesola Ademiloye Orcid Logo

DOI (Published version): 10.1101/136648

Abstract

In normal physiological and healthy conditions, red blood cells (RBCs) deform readily as they passthrough the microcapillaries and the spleen. In this paper, we examine the effects of Plasmodiumfalciparum infection and maturation on the large deformation behavior of malaria-infected redblood cells (...

Full description

Published in: Proceedings of the 5th International Conference on Computational and Mathematical Biomedical Engineering (CMBE2017)
Published: Pittsburgh, Pennsylvania, USA 5th International Conference on Computational and Mathematical Biomedical Engineering (CMBE2017) 2017
Online Access: http://www.compbiomed.net/getfile.php?type=13/site_documents&id=CMBE17Vol1prepress_2227-9385.pdf
URI: https://cronfa.swan.ac.uk/Record/cronfa44908
first_indexed 2018-10-16T13:47:48Z
last_indexed 2019-01-14T13:58:36Z
id cronfa44908
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-01-14T11:47:54.8769478</datestamp><bib-version>v2</bib-version><id>44908</id><entry>2018-10-16</entry><title>Element-free multiscale modeling of large deformation behavior of red blood cell membrane with malaria infection</title><swanseaauthors><author><sid>e37960ed89a7e3eaeba2201762626594</sid><ORCID>0000-0002-9741-6488</ORCID><firstname>Adesola</firstname><surname>Ademiloye</surname><name>Adesola Ademiloye</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-10-16</date><deptcode>EAAS</deptcode><abstract>In normal physiological and healthy conditions, red blood cells (RBCs) deform readily as they passthrough the microcapillaries and the spleen. In this paper, we examine the effects of Plasmodiumfalciparum infection and maturation on the large deformation behavior of malaria-infected redblood cells (iRBCs) by means of a three-dimensional (3D) multiscale meshfree method. Wenumerically simulated the optical tweezers experiment and observed the force-displacementresponse of the iRBC membrane as malaria infection progresses. Our simulation results agree well with experimental data and confirm that the deformability of malaria-infected cells decreasessignificantly as malaria infection progresses.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Proceedings of the 5th International Conference on Computational and Mathematical Biomedical Engineering (CMBE2017)</journal><paginationStart>316</paginationStart><paginationEnd>319</paginationEnd><publisher>5th International Conference on Computational and Mathematical Biomedical Engineering (CMBE2017)</publisher><placeOfPublication>Pittsburgh, Pennsylvania, USA</placeOfPublication><keywords>Red blood cell deformability, malaria infection, multiscale meshfree method</keywords><publishedDay>30</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-04-30</publishedDate><doi>10.1101/136648</doi><url>http://www.compbiomed.net/getfile.php?type=13/site_documents&amp;amp;id=CMBE17Vol1prepress_2227-9385.pdf</url><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-01-14T11:47:54.8769478</lastEdited><Created>2018-10-16T12:47:46.9275200</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Biomedical Engineering</level></path><authors><author><firstname>A. S.</firstname><surname>Ademiloye</surname><order>1</order></author><author><firstname>L. W.</firstname><surname>Zhang</surname><order>2</order></author><author><firstname>K. M.</firstname><surname>Liew</surname><order>3</order></author><author><firstname>Adesola</firstname><surname>Ademiloye</surname><orcid>0000-0002-9741-6488</orcid><order>4</order></author></authors><documents><document><filename>0044908-12112018144110.pdf</filename><originalFilename>ademiloye2018.pdf</originalFilename><uploaded>2018-11-12T14:41:10.2670000</uploaded><type>Output</type><contentLength>843471</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-11-12T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2019-01-14T11:47:54.8769478 v2 44908 2018-10-16 Element-free multiscale modeling of large deformation behavior of red blood cell membrane with malaria infection e37960ed89a7e3eaeba2201762626594 0000-0002-9741-6488 Adesola Ademiloye Adesola Ademiloye true false 2018-10-16 EAAS In normal physiological and healthy conditions, red blood cells (RBCs) deform readily as they passthrough the microcapillaries and the spleen. In this paper, we examine the effects of Plasmodiumfalciparum infection and maturation on the large deformation behavior of malaria-infected redblood cells (iRBCs) by means of a three-dimensional (3D) multiscale meshfree method. Wenumerically simulated the optical tweezers experiment and observed the force-displacementresponse of the iRBC membrane as malaria infection progresses. Our simulation results agree well with experimental data and confirm that the deformability of malaria-infected cells decreasessignificantly as malaria infection progresses. Conference Paper/Proceeding/Abstract Proceedings of the 5th International Conference on Computational and Mathematical Biomedical Engineering (CMBE2017) 316 319 5th International Conference on Computational and Mathematical Biomedical Engineering (CMBE2017) Pittsburgh, Pennsylvania, USA Red blood cell deformability, malaria infection, multiscale meshfree method 30 4 2017 2017-04-30 10.1101/136648 http://www.compbiomed.net/getfile.php?type=13/site_documents&amp;id=CMBE17Vol1prepress_2227-9385.pdf COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2019-01-14T11:47:54.8769478 2018-10-16T12:47:46.9275200 Faculty of Science and Engineering School of Engineering and Applied Sciences - Biomedical Engineering A. S. Ademiloye 1 L. W. Zhang 2 K. M. Liew 3 Adesola Ademiloye 0000-0002-9741-6488 4 0044908-12112018144110.pdf ademiloye2018.pdf 2018-11-12T14:41:10.2670000 Output 843471 application/pdf Version of Record true 2018-11-12T00:00:00.0000000 true eng
title Element-free multiscale modeling of large deformation behavior of red blood cell membrane with malaria infection
spellingShingle Element-free multiscale modeling of large deformation behavior of red blood cell membrane with malaria infection
Adesola Ademiloye
title_short Element-free multiscale modeling of large deformation behavior of red blood cell membrane with malaria infection
title_full Element-free multiscale modeling of large deformation behavior of red blood cell membrane with malaria infection
title_fullStr Element-free multiscale modeling of large deformation behavior of red blood cell membrane with malaria infection
title_full_unstemmed Element-free multiscale modeling of large deformation behavior of red blood cell membrane with malaria infection
title_sort Element-free multiscale modeling of large deformation behavior of red blood cell membrane with malaria infection
author_id_str_mv e37960ed89a7e3eaeba2201762626594
author_id_fullname_str_mv e37960ed89a7e3eaeba2201762626594_***_Adesola Ademiloye
author Adesola Ademiloye
author2 A. S. Ademiloye
L. W. Zhang
K. M. Liew
Adesola Ademiloye
format Conference Paper/Proceeding/Abstract
container_title Proceedings of the 5th International Conference on Computational and Mathematical Biomedical Engineering (CMBE2017)
container_start_page 316
publishDate 2017
institution Swansea University
doi_str_mv 10.1101/136648
publisher 5th International Conference on Computational and Mathematical Biomedical Engineering (CMBE2017)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Biomedical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Biomedical Engineering
url http://www.compbiomed.net/getfile.php?type=13/site_documents&amp;id=CMBE17Vol1prepress_2227-9385.pdf
document_store_str 1
active_str 0
description In normal physiological and healthy conditions, red blood cells (RBCs) deform readily as they passthrough the microcapillaries and the spleen. In this paper, we examine the effects of Plasmodiumfalciparum infection and maturation on the large deformation behavior of malaria-infected redblood cells (iRBCs) by means of a three-dimensional (3D) multiscale meshfree method. Wenumerically simulated the optical tweezers experiment and observed the force-displacementresponse of the iRBC membrane as malaria infection progresses. Our simulation results agree well with experimental data and confirm that the deformability of malaria-infected cells decreasessignificantly as malaria infection progresses.
published_date 2017-04-30T13:36:08Z
_version_ 1822046938587987968
score 11.516414