No Cover Image

Journal article 1050 views 132 downloads

European warm-season temperature and hydroclimate since 850 CE

Fredrik Charpentier Ljungqvist, Andrea Seim, Paul J Krusic, Jesús Fidel González-Rouco, Johannes P Werner, Edward R Cook, Eduardo Zorita, Jürg Luterbacher, Elena Xoplaki, Georgia Destouni, Elena García-Bustamante, Camilo Andrés Melo Aguilar, Kristina Seftigen, Jianglin Wang, Mary Gagen Orcid Logo, Jan Esper, Olga Solomina, Dominik Fleitmann, Ulf Büntgen

Environmental Research Letters, Volume: 14, Issue: 8, Start page: 084015

Swansea University Author: Mary Gagen Orcid Logo

  • 50763v2.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution 3.0 licence (CC-BY).

    Download (4.8MB)

Abstract

The long-term relationship between temperature and rainfall variables (hydroclimate) remains uncertain due to the short length of instrumental measurements and inconsistent results from climate model simulations. This lack of understanding is critical with regard to projecting future drought and flo...

Full description

Published in: Environmental Research Letters
ISSN: 1748-9326
Published: IOP Publishing 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa50763
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The long-term relationship between temperature and rainfall variables (hydroclimate) remains uncertain due to the short length of instrumental measurements and inconsistent results from climate model simulations. This lack of understanding is critical with regard to projecting future drought and flood risks. Here we assess northern Hemisphere summertime co-variability patterns between temperature and rainfall, over Europe back to 850 CE using instrumental measurements, tree-ring reconstructions, and climate model simulations. We find the temperature–hydroclimate relationship, in both the instrumental and proxt data to be more positive at lower frequencies, but less so in model simulations. In comp[arison to instrumental climate data, climate model simulations reveal a more negative co-variability between temperature and hydroclimate, across all timescales both lower and higher frequency. The reconstructions exhibit more positive co-variability. Despite observed differences in the temperature–hydroclimate co-variability patterns in instrumental, reconstructed and model simulated data, all data types share similar phase-relationships between temperature and hydroclimate, all of which indicate the common influence of external forcing of the climate system. The co-variability between temperature and soil moisture in the model simulations is overestimated, implying a possible overestimation of temperature-driven future drought risks.
Keywords: climate variability, hydroclimate, climate model simulations, tree-ring data, gridded climate reconstructions, Europe, past millennium
College: Faculty of Science and Engineering
Issue: 8
Start Page: 084015