No Cover Image

Journal article 768 views 541 downloads

Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections

Prabhsimran Singh, Yogesh K. Dwivedi, Karanjeet Singh Kahlon, Annie Pathania, Ravinder Singh Sawhney, Yogesh Dwivedi Orcid Logo

Government Information Quarterly, Volume: 37, Issue: 2, Start page: 101444

Swansea University Author: Yogesh Dwivedi Orcid Logo

  • Can Twitter Analytics Predict Election Outcomes.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).

    Download (1.08MB)
Published in: Government Information Quarterly
ISSN: 0740-624X
Published: Elsevier BV 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53059
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2019-12-19T04:17:35Z
last_indexed 2020-10-03T03:13:50Z
id cronfa53059
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-10-02T15:43:37.3049176</datestamp><bib-version>v2</bib-version><id>53059</id><entry>2019-12-18</entry><title>Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections</title><swanseaauthors><author><sid>d154596e71b99ad1285563c8fdd373d7</sid><ORCID>0000-0002-5547-9990</ORCID><firstname>Yogesh</firstname><surname>Dwivedi</surname><name>Yogesh Dwivedi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-12-18</date><deptcode>BBU</deptcode><abstract/><type>Journal Article</type><journal>Government Information Quarterly</journal><volume>37</volume><journalNumber>2</journalNumber><paginationStart>101444</paginationStart><publisher>Elsevier BV</publisher><issnPrint>0740-624X</issnPrint><keywords>Analytics; Election prediction; Social media; Natural language processing; Machine learning; Sentiment analysis; Twitter</keywords><publishedDay>1</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-04-01</publishedDate><doi>10.1016/j.giq.2019.101444</doi><url/><notes/><college>COLLEGE NANME</college><department>Business</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BBU</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-10-02T15:43:37.3049176</lastEdited><Created>2019-12-18T18:23:50.2069797</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Management - Business Management</level></path><authors><author><firstname>Prabhsimran</firstname><surname>Singh</surname><order>1</order></author><author><firstname>Yogesh K.</firstname><surname>Dwivedi</surname><order>2</order></author><author><firstname>Karanjeet Singh</firstname><surname>Kahlon</surname><order>3</order></author><author><firstname>Annie</firstname><surname>Pathania</surname><order>4</order></author><author><firstname>Ravinder Singh</firstname><surname>Sawhney</surname><order>5</order></author><author><firstname>Yogesh</firstname><surname>Dwivedi</surname><orcid>0000-0002-5547-9990</orcid><order>6</order></author></authors><documents><document><filename>53059__16144__ec546864e9e047eeadfd1b1e3893071c.pdf</filename><originalFilename>Can Twitter Analytics Predict Election Outcomes.pdf</originalFilename><uploaded>2019-12-18T18:26:52.0014223</uploaded><type>Output</type><contentLength>1133212</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-07-09T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2020-10-02T15:43:37.3049176 v2 53059 2019-12-18 Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections d154596e71b99ad1285563c8fdd373d7 0000-0002-5547-9990 Yogesh Dwivedi Yogesh Dwivedi true false 2019-12-18 BBU Journal Article Government Information Quarterly 37 2 101444 Elsevier BV 0740-624X Analytics; Election prediction; Social media; Natural language processing; Machine learning; Sentiment analysis; Twitter 1 4 2020 2020-04-01 10.1016/j.giq.2019.101444 COLLEGE NANME Business COLLEGE CODE BBU Swansea University 2020-10-02T15:43:37.3049176 2019-12-18T18:23:50.2069797 Faculty of Humanities and Social Sciences School of Management - Business Management Prabhsimran Singh 1 Yogesh K. Dwivedi 2 Karanjeet Singh Kahlon 3 Annie Pathania 4 Ravinder Singh Sawhney 5 Yogesh Dwivedi 0000-0002-5547-9990 6 53059__16144__ec546864e9e047eeadfd1b1e3893071c.pdf Can Twitter Analytics Predict Election Outcomes.pdf 2019-12-18T18:26:52.0014223 Output 1133212 application/pdf Accepted Manuscript true 2021-07-09T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true
title Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections
spellingShingle Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections
Yogesh Dwivedi
title_short Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections
title_full Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections
title_fullStr Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections
title_full_unstemmed Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections
title_sort Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections
author_id_str_mv d154596e71b99ad1285563c8fdd373d7
author_id_fullname_str_mv d154596e71b99ad1285563c8fdd373d7_***_Yogesh Dwivedi
author Yogesh Dwivedi
author2 Prabhsimran Singh
Yogesh K. Dwivedi
Karanjeet Singh Kahlon
Annie Pathania
Ravinder Singh Sawhney
Yogesh Dwivedi
format Journal article
container_title Government Information Quarterly
container_volume 37
container_issue 2
container_start_page 101444
publishDate 2020
institution Swansea University
issn 0740-624X
doi_str_mv 10.1016/j.giq.2019.101444
publisher Elsevier BV
college_str Faculty of Humanities and Social Sciences
hierarchytype
hierarchy_top_id facultyofhumanitiesandsocialsciences
hierarchy_top_title Faculty of Humanities and Social Sciences
hierarchy_parent_id facultyofhumanitiesandsocialsciences
hierarchy_parent_title Faculty of Humanities and Social Sciences
department_str School of Management - Business Management{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Management - Business Management
document_store_str 1
active_str 0
published_date 2020-04-01T04:05:50Z
_version_ 1763753433892913152
score 10.988081