Journal article 993 views 741 downloads
Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections
Prabhsimran Singh,
Yogesh K. Dwivedi,
Karanjeet Singh Kahlon,
Annie Pathania,
Ravinder Singh Sawhney,
Yogesh Dwivedi
Government Information Quarterly, Volume: 37, Issue: 2, Start page: 101444
Swansea University Author: Yogesh Dwivedi
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).
Download (1.08MB)
DOI (Published version): 10.1016/j.giq.2019.101444
Abstract
Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections
Published in: | Government Information Quarterly |
---|---|
ISSN: | 0740-624X |
Published: |
Elsevier BV
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53059 |
first_indexed |
2019-12-19T04:17:35Z |
---|---|
last_indexed |
2020-10-03T03:13:50Z |
id |
cronfa53059 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-10-02T15:43:37.3049176</datestamp><bib-version>v2</bib-version><id>53059</id><entry>2019-12-18</entry><title>Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections</title><swanseaauthors><author><sid>d154596e71b99ad1285563c8fdd373d7</sid><firstname>Yogesh</firstname><surname>Dwivedi</surname><name>Yogesh Dwivedi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-12-18</date><abstract/><type>Journal Article</type><journal>Government Information Quarterly</journal><volume>37</volume><journalNumber>2</journalNumber><paginationStart>101444</paginationStart><publisher>Elsevier BV</publisher><issnPrint>0740-624X</issnPrint><keywords>Analytics; Election prediction; Social media; Natural language processing; Machine learning; Sentiment analysis; Twitter</keywords><publishedDay>1</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-04-01</publishedDate><doi>10.1016/j.giq.2019.101444</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-10-02T15:43:37.3049176</lastEdited><Created>2019-12-18T18:23:50.2069797</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Management - Business Management</level></path><authors><author><firstname>Prabhsimran</firstname><surname>Singh</surname><order>1</order></author><author><firstname>Yogesh K.</firstname><surname>Dwivedi</surname><order>2</order></author><author><firstname>Karanjeet Singh</firstname><surname>Kahlon</surname><order>3</order></author><author><firstname>Annie</firstname><surname>Pathania</surname><order>4</order></author><author><firstname>Ravinder Singh</firstname><surname>Sawhney</surname><order>5</order></author><author><firstname>Yogesh</firstname><surname>Dwivedi</surname><order>6</order></author></authors><documents><document><filename>53059__16144__ec546864e9e047eeadfd1b1e3893071c.pdf</filename><originalFilename>Can Twitter Analytics Predict Election Outcomes.pdf</originalFilename><uploaded>2019-12-18T18:26:52.0014223</uploaded><type>Output</type><contentLength>1133212</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-07-09T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-10-02T15:43:37.3049176 v2 53059 2019-12-18 Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections d154596e71b99ad1285563c8fdd373d7 Yogesh Dwivedi Yogesh Dwivedi true false 2019-12-18 Journal Article Government Information Quarterly 37 2 101444 Elsevier BV 0740-624X Analytics; Election prediction; Social media; Natural language processing; Machine learning; Sentiment analysis; Twitter 1 4 2020 2020-04-01 10.1016/j.giq.2019.101444 COLLEGE NANME COLLEGE CODE Swansea University 2020-10-02T15:43:37.3049176 2019-12-18T18:23:50.2069797 Faculty of Humanities and Social Sciences School of Management - Business Management Prabhsimran Singh 1 Yogesh K. Dwivedi 2 Karanjeet Singh Kahlon 3 Annie Pathania 4 Ravinder Singh Sawhney 5 Yogesh Dwivedi 6 53059__16144__ec546864e9e047eeadfd1b1e3893071c.pdf Can Twitter Analytics Predict Election Outcomes.pdf 2019-12-18T18:26:52.0014223 Output 1133212 application/pdf Accepted Manuscript true 2021-07-09T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true |
title |
Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections |
spellingShingle |
Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections Yogesh Dwivedi |
title_short |
Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections |
title_full |
Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections |
title_fullStr |
Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections |
title_full_unstemmed |
Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections |
title_sort |
Can twitter analytics predict election outcome? An insight from 2017 Punjab assembly elections |
author_id_str_mv |
d154596e71b99ad1285563c8fdd373d7 |
author_id_fullname_str_mv |
d154596e71b99ad1285563c8fdd373d7_***_Yogesh Dwivedi |
author |
Yogesh Dwivedi |
author2 |
Prabhsimran Singh Yogesh K. Dwivedi Karanjeet Singh Kahlon Annie Pathania Ravinder Singh Sawhney Yogesh Dwivedi |
format |
Journal article |
container_title |
Government Information Quarterly |
container_volume |
37 |
container_issue |
2 |
container_start_page |
101444 |
publishDate |
2020 |
institution |
Swansea University |
issn |
0740-624X |
doi_str_mv |
10.1016/j.giq.2019.101444 |
publisher |
Elsevier BV |
college_str |
Faculty of Humanities and Social Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofhumanitiesandsocialsciences |
hierarchy_top_title |
Faculty of Humanities and Social Sciences |
hierarchy_parent_id |
facultyofhumanitiesandsocialsciences |
hierarchy_parent_title |
Faculty of Humanities and Social Sciences |
department_str |
School of Management - Business Management{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Management - Business Management |
document_store_str |
1 |
active_str |
0 |
published_date |
2020-04-01T08:02:30Z |
_version_ |
1823384902995804160 |
score |
11.050656 |