Journal article 932 views 514 downloads
Using artificial intelligence to detect crisis related to events: Decision making in B2B by artificial intelligence
Industrial Marketing Management, Volume: 91, Pages: 257 - 273
Swansea University Author: Nick Hajli
-
PDF | Accepted Manuscript
©2020 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (1.24MB)
DOI (Published version): 10.1016/j.indmarman.2020.09.015
Abstract
Using artificial intelligence to detect crisis related to events: Decision making in B2B by artificial intelligence
Published in: | Industrial Marketing Management |
---|---|
ISSN: | 0019-8501 |
Published: |
Elsevier BV
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa55363 |
first_indexed |
2020-10-07T12:18:52Z |
---|---|
last_indexed |
2020-11-25T04:12:11Z |
id |
cronfa55363 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-11-24T16:42:07.9114250</datestamp><bib-version>v2</bib-version><id>55363</id><entry>2020-10-07</entry><title>Using artificial intelligence to detect crisis related to events: Decision making in B2B by artificial intelligence</title><swanseaauthors><author><sid>7608daaad16c0921edd18f5ac2643553</sid><ORCID>0000-0002-9818-181X</ORCID><firstname>Nick</firstname><surname>Hajli</surname><name>Nick Hajli</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-10-07</date><deptcode>CBAE</deptcode><abstract/><type>Journal Article</type><journal>Industrial Marketing Management</journal><volume>91</volume><journalNumber/><paginationStart>257</paginationStart><paginationEnd>273</paginationEnd><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0019-8501</issnPrint><issnElectronic/><keywords>Big data; Artificial intelligence; Machine learning; Data mining; Sentiment analytics</keywords><publishedDay>1</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-11-01</publishedDate><doi>10.1016/j.indmarman.2020.09.015</doi><url/><notes/><college>COLLEGE NANME</college><department>Management School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CBAE</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-11-24T16:42:07.9114250</lastEdited><Created>2020-10-07T13:14:20.7346835</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Management - Business Management</level></path><authors><author><firstname>Aydin</firstname><surname>Farrokhi</surname><order>1</order></author><author><firstname>Farid</firstname><surname>Shirazi</surname><order>2</order></author><author><firstname>Nick</firstname><surname>Hajli</surname><orcid>0000-0002-9818-181X</orcid><order>3</order></author><author><firstname>Mina</firstname><surname>Tajvidi</surname><order>4</order></author></authors><documents><document><filename>55363__18738__418f9c5428d3453e97494fa1ccd9bd23.pdf</filename><originalFilename>55363.pdf</originalFilename><uploaded>2020-11-24T16:36:09.3643681</uploaded><type>Output</type><contentLength>1301395</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-10-06T00:00:00.0000000</embargoDate><documentNotes>©2020 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-11-24T16:42:07.9114250 v2 55363 2020-10-07 Using artificial intelligence to detect crisis related to events: Decision making in B2B by artificial intelligence 7608daaad16c0921edd18f5ac2643553 0000-0002-9818-181X Nick Hajli Nick Hajli true false 2020-10-07 CBAE Journal Article Industrial Marketing Management 91 257 273 Elsevier BV 0019-8501 Big data; Artificial intelligence; Machine learning; Data mining; Sentiment analytics 1 11 2020 2020-11-01 10.1016/j.indmarman.2020.09.015 COLLEGE NANME Management School COLLEGE CODE CBAE Swansea University 2020-11-24T16:42:07.9114250 2020-10-07T13:14:20.7346835 Faculty of Humanities and Social Sciences School of Management - Business Management Aydin Farrokhi 1 Farid Shirazi 2 Nick Hajli 0000-0002-9818-181X 3 Mina Tajvidi 4 55363__18738__418f9c5428d3453e97494fa1ccd9bd23.pdf 55363.pdf 2020-11-24T16:36:09.3643681 Output 1301395 application/pdf Accepted Manuscript true 2022-10-06T00:00:00.0000000 ©2020 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
Using artificial intelligence to detect crisis related to events: Decision making in B2B by artificial intelligence |
spellingShingle |
Using artificial intelligence to detect crisis related to events: Decision making in B2B by artificial intelligence Nick Hajli |
title_short |
Using artificial intelligence to detect crisis related to events: Decision making in B2B by artificial intelligence |
title_full |
Using artificial intelligence to detect crisis related to events: Decision making in B2B by artificial intelligence |
title_fullStr |
Using artificial intelligence to detect crisis related to events: Decision making in B2B by artificial intelligence |
title_full_unstemmed |
Using artificial intelligence to detect crisis related to events: Decision making in B2B by artificial intelligence |
title_sort |
Using artificial intelligence to detect crisis related to events: Decision making in B2B by artificial intelligence |
author_id_str_mv |
7608daaad16c0921edd18f5ac2643553 |
author_id_fullname_str_mv |
7608daaad16c0921edd18f5ac2643553_***_Nick Hajli |
author |
Nick Hajli |
author2 |
Aydin Farrokhi Farid Shirazi Nick Hajli Mina Tajvidi |
format |
Journal article |
container_title |
Industrial Marketing Management |
container_volume |
91 |
container_start_page |
257 |
publishDate |
2020 |
institution |
Swansea University |
issn |
0019-8501 |
doi_str_mv |
10.1016/j.indmarman.2020.09.015 |
publisher |
Elsevier BV |
college_str |
Faculty of Humanities and Social Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofhumanitiesandsocialsciences |
hierarchy_top_title |
Faculty of Humanities and Social Sciences |
hierarchy_parent_id |
facultyofhumanitiesandsocialsciences |
hierarchy_parent_title |
Faculty of Humanities and Social Sciences |
department_str |
School of Management - Business Management{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Management - Business Management |
document_store_str |
1 |
active_str |
0 |
published_date |
2020-11-01T14:00:52Z |
_version_ |
1821323718464372736 |
score |
11.047674 |