No Cover Image

Journal article 300 views 112 downloads

Coefficient inequalities for a subclass of Bazilevič functions

Sa’adatul Fitri, (Marjono), Derek Thomas, Ratno Bagus Edy Wibowo

Demonstratio Mathematica, Volume: 53, Issue: 1, Pages: 27 - 37

Swansea University Author: Derek Thomas

  • 57027.pdf

    PDF | Version of Record

    © 2020 Sa’adatul Fitri et al. This work is licensed under the Creative Commons Attribution 4.0 Public License

    Download (1.19MB)

Check full text

DOI (Published version): 10.1515/dema-2020-0040

Abstract

AbstractLet f be analytic in {\mathbb{D}}=\{z:|z\mathrm{|\hspace{0.17em}\lt \hspace{0.17em}1\}} with f(z)=z+{\sum }_{n\mathrm{=2}}^{\infty }{a}_{n}{z}^{n}, and for α ≥ 0 and 0 < λ ≤ 1, let { {\mathcal B} }_{1}(\alpha ,\lambda ) denote the subclass of Bazilevič functions satisfying \left|f^{\p...

Full description

Published in: Demonstratio Mathematica
ISSN: 2391-4661
Published: Walter de Gruyter GmbH 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57027
Abstract: AbstractLet f be analytic in {\mathbb{D}}=\{z:|z\mathrm{|\hspace{0.17em}\lt \hspace{0.17em}1\}} with f(z)=z+{\sum }_{n\mathrm{=2}}^{\infty }{a}_{n}{z}^{n}, and for α ≥ 0 and 0 < λ ≤ 1, let { {\mathcal B} }_{1}(\alpha ,\lambda ) denote the subclass of Bazilevič functions satisfying \left|f^{\prime} (z){\left(\frac{z}{f(z)}\right)}^{1-\alpha }-1\right|\lt \lambda for 0 < λ ≤ 1. We give sharp bounds for various coefficient problems when f\in { {\mathcal B} }_{1}(\alpha ,\lambda ), thus extending recent work in the case λ = 1.
Keywords: univalent functions, Bazilevi, coefficients, inverse, Fekete–Szegö, Hankel determinant
College: Faculty of Science and Engineering
Issue: 1
Start Page: 27
End Page: 37