No Cover Image

Journal article 301 views 113 downloads

Coefficient inequalities for a subclass of Bazilevič functions

Sa’adatul Fitri, (Marjono), Derek Thomas, Ratno Bagus Edy Wibowo

Demonstratio Mathematica, Volume: 53, Issue: 1, Pages: 27 - 37

Swansea University Author: Derek Thomas

  • 57027.pdf

    PDF | Version of Record

    © 2020 Sa’adatul Fitri et al. This work is licensed under the Creative Commons Attribution 4.0 Public License

    Download (1.19MB)

Check full text

DOI (Published version): 10.1515/dema-2020-0040

Abstract

AbstractLet f be analytic in {\mathbb{D}}=\{z:|z\mathrm{|\hspace{0.17em}\lt \hspace{0.17em}1\}} with f(z)=z+{\sum }_{n\mathrm{=2}}^{\infty }{a}_{n}{z}^{n}, and for α ≥ 0 and 0 < λ ≤ 1, let { {\mathcal B} }_{1}(\alpha ,\lambda ) denote the subclass of Bazilevič functions satisfying \left|f^{\p...

Full description

Published in: Demonstratio Mathematica
ISSN: 2391-4661
Published: Walter de Gruyter GmbH 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57027
first_indexed 2021-07-08T12:04:15Z
last_indexed 2021-07-09T03:21:23Z
id cronfa57027
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-07-08T13:09:29.8516836</datestamp><bib-version>v2</bib-version><id>57027</id><entry>2021-06-04</entry><title>Coefficient inequalities for a subclass of Bazilevi&#x10D; functions</title><swanseaauthors><author><sid>0e4f145bc8252e32a2293d49084a1fa5</sid><firstname>Derek</firstname><surname>Thomas</surname><name>Derek Thomas</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-06-04</date><deptcode>MACS</deptcode><abstract>AbstractLet f be analytic in {\mathbb{D}}=\{z:|z\mathrm{|\hspace{0.17em}\lt \hspace{0.17em}1\}} with f(z)=z+{\sum }_{n\mathrm{=2}}^{\infty }{a}_{n}{z}^{n}, and for &#x3B1; &#x2265; 0 and 0 &amp;lt; &#x3BB; &#x2264; 1, let { {\mathcal B} }_{1}(\alpha ,\lambda ) denote the subclass of Bazilevi&#x10D; functions satisfying \left|f^{\prime} (z){\left(\frac{z}{f(z)}\right)}^{1-\alpha }-1\right|\lt \lambda for 0 &amp;lt; &#x3BB; &#x2264; 1. We give sharp bounds for various coefficient problems when f\in { {\mathcal B} }_{1}(\alpha ,\lambda ), thus extending recent work in the case &#x3BB; = 1.</abstract><type>Journal Article</type><journal>Demonstratio Mathematica</journal><volume>53</volume><journalNumber>1</journalNumber><paginationStart>27</paginationStart><paginationEnd>37</paginationEnd><publisher>Walter de Gruyter GmbH</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2391-4661</issnElectronic><keywords>univalent functions, Bazilevi, coefficients, inverse, Fekete&#x2013;Szeg&#xF6;, Hankel determinant</keywords><publishedDay>7</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-05-07</publishedDate><doi>10.1515/dema-2020-0040</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-07-08T13:09:29.8516836</lastEdited><Created>2021-06-04T09:48:48.0765353</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Sa&#x2019;adatul</firstname><surname>Fitri</surname><order>1</order></author><author><firstname></firstname><surname>(Marjono)</surname><order>2</order></author><author><firstname>Derek</firstname><surname>Thomas</surname><order>3</order></author><author><firstname>Ratno Bagus Edy</firstname><surname>Wibowo</surname><order>4</order></author></authors><documents><document><filename>57027__20364__19844ac5e00a48f3b915bb882b34cb95.pdf</filename><originalFilename>57027.pdf</originalFilename><uploaded>2021-07-08T13:07:36.5653627</uploaded><type>Output</type><contentLength>1253026</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2020 Sa&#x2019;adatul Fitri et al. This work is licensed under the Creative Commons Attribution 4.0 Public License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-07-08T13:09:29.8516836 v2 57027 2021-06-04 Coefficient inequalities for a subclass of Bazilevič functions 0e4f145bc8252e32a2293d49084a1fa5 Derek Thomas Derek Thomas true false 2021-06-04 MACS AbstractLet f be analytic in {\mathbb{D}}=\{z:|z\mathrm{|\hspace{0.17em}\lt \hspace{0.17em}1\}} with f(z)=z+{\sum }_{n\mathrm{=2}}^{\infty }{a}_{n}{z}^{n}, and for α ≥ 0 and 0 &lt; λ ≤ 1, let { {\mathcal B} }_{1}(\alpha ,\lambda ) denote the subclass of Bazilevič functions satisfying \left|f^{\prime} (z){\left(\frac{z}{f(z)}\right)}^{1-\alpha }-1\right|\lt \lambda for 0 &lt; λ ≤ 1. We give sharp bounds for various coefficient problems when f\in { {\mathcal B} }_{1}(\alpha ,\lambda ), thus extending recent work in the case λ = 1. Journal Article Demonstratio Mathematica 53 1 27 37 Walter de Gruyter GmbH 2391-4661 univalent functions, Bazilevi, coefficients, inverse, Fekete–Szegö, Hankel determinant 7 5 2020 2020-05-07 10.1515/dema-2020-0040 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2021-07-08T13:09:29.8516836 2021-06-04T09:48:48.0765353 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Sa’adatul Fitri 1 (Marjono) 2 Derek Thomas 3 Ratno Bagus Edy Wibowo 4 57027__20364__19844ac5e00a48f3b915bb882b34cb95.pdf 57027.pdf 2021-07-08T13:07:36.5653627 Output 1253026 application/pdf Version of Record true © 2020 Sa’adatul Fitri et al. This work is licensed under the Creative Commons Attribution 4.0 Public License true eng https://creativecommons.org/licenses/by/4.0/
title Coefficient inequalities for a subclass of Bazilevič functions
spellingShingle Coefficient inequalities for a subclass of Bazilevič functions
Derek Thomas
title_short Coefficient inequalities for a subclass of Bazilevič functions
title_full Coefficient inequalities for a subclass of Bazilevič functions
title_fullStr Coefficient inequalities for a subclass of Bazilevič functions
title_full_unstemmed Coefficient inequalities for a subclass of Bazilevič functions
title_sort Coefficient inequalities for a subclass of Bazilevič functions
author_id_str_mv 0e4f145bc8252e32a2293d49084a1fa5
author_id_fullname_str_mv 0e4f145bc8252e32a2293d49084a1fa5_***_Derek Thomas
author Derek Thomas
author2 Sa’adatul Fitri
(Marjono)
Derek Thomas
Ratno Bagus Edy Wibowo
format Journal article
container_title Demonstratio Mathematica
container_volume 53
container_issue 1
container_start_page 27
publishDate 2020
institution Swansea University
issn 2391-4661
doi_str_mv 10.1515/dema-2020-0040
publisher Walter de Gruyter GmbH
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description AbstractLet f be analytic in {\mathbb{D}}=\{z:|z\mathrm{|\hspace{0.17em}\lt \hspace{0.17em}1\}} with f(z)=z+{\sum }_{n\mathrm{=2}}^{\infty }{a}_{n}{z}^{n}, and for α ≥ 0 and 0 &lt; λ ≤ 1, let { {\mathcal B} }_{1}(\alpha ,\lambda ) denote the subclass of Bazilevič functions satisfying \left|f^{\prime} (z){\left(\frac{z}{f(z)}\right)}^{1-\alpha }-1\right|\lt \lambda for 0 &lt; λ ≤ 1. We give sharp bounds for various coefficient problems when f\in { {\mathcal B} }_{1}(\alpha ,\lambda ), thus extending recent work in the case λ = 1.
published_date 2020-05-07T02:18:23Z
_version_ 1821370119687766016
score 11.04748