No Cover Image

Journal article 878 views 205 downloads

Time-resolved in situ synchrotron-microCT: 4D deformation of bone and bone analogues using digital volume correlation

Marta Peña Fernández, Alexander P. Kao, Roxane Bonithon, David Howells, Andrew J. Bodey, Kazimir Wanelik, Frank Witte, Richard Johnston Orcid Logo, Hari Arora Orcid Logo, Gianluca Tozzi

Acta Biomaterialia, Volume: 131, Pages: 424 - 439

Swansea University Authors: David Howells, Richard Johnston Orcid Logo, Hari Arora Orcid Logo

  • 57047.pdf

    PDF | Accepted Manuscript

    ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)

    Download (6.23MB)

Abstract

Digital volume correlation (DVC) in combination with high-resolution micro-computed tomography (microCT) imaging and in situ mechanical testing is gaining popularity for quantifying 3D full-field strains in bone and biomaterials. However, traditional in situ time-lapsed (i.e., interrupted) mechanica...

Full description

Published in: Acta Biomaterialia
ISSN: 1742-7061
Published: Elsevier BV 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57047
Abstract: Digital volume correlation (DVC) in combination with high-resolution micro-computed tomography (microCT) imaging and in situ mechanical testing is gaining popularity for quantifying 3D full-field strains in bone and biomaterials. However, traditional in situ time-lapsed (i.e., interrupted) mechanical testing cannot fully capture the dynamic strain mechanisms in viscoelastic biological materials. The aim of this study was to investigate the time-resolved deformation of bone structures and analogues via continuous in situ synchrotron-radiation microCT (SR-microCT) compression and DVC to gain a better insight into their structure-function relationships. Fast SR-microCT imaging enabled the deformation behaviour to be captured with high temporal and spatial resolution. Time-resolved DVC highlighted the relationship between local strains and damage initiation and progression in the different biostructures undergoing plastic deformation, bending and/or buckling of their main microstructural elements. The results showed that SR-microCT continuous mechanical testing complemented and enhanced the information obtained from time-lapsed testing, which may underestimate the 3D strain magnitudes as a result of the stress relaxation occurring in between steps before image acquisition in porous biomaterials. Altogether, the findings of this study highlight the importance of time-resolved in situ experiments to fully characterise the time-dependent mechanical behaviour of biological tissues and biomaterials and to further explore their micromechanics under physiologically relevant conditions.
Keywords: Bone, time-resolved SR-microCT, continuous in situ mechanics, digital volume correlation, time-dependent behaviour
College: Faculty of Science and Engineering
Start Page: 424
End Page: 439