No Cover Image

Journal article 205 views 93 downloads

On the difference of inverse coefficients of convex functions

Young Jae Sim, Derek Thomas

The Journal of Analysis, Volume: 30, Issue: 2, Pages: 875 - 893

Swansea University Author: Derek Thomas

  • 59145.pdf

    PDF | Version of Record

    Copyright: Crown 2021. This article is licensed under a Creative Commons Attribution 4.0 International License

    Download (307.37KB)

Abstract

Let f be analytic in the unit disk D={z∈C:|z|<1}, and S be the subclass of normalised univalent functions given by f(z)=z+∑∞n=2anzn for z∈D. Let F be the inverse function of f defined in some set |ω|≤r0(f), and be given by F(ω)=ω+∑∞n=2Anωn. We prove the sharp inequalities −1/3≤|A4|−|A3|≤1/4 for t...

Full description

Published in: The Journal of Analysis
ISSN: 0971-3611 2367-2501
Published: Springer Science and Business Media LLC 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59145
first_indexed 2022-01-10T16:50:10Z
last_indexed 2022-06-16T03:19:29Z
id cronfa59145
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-06-15T14:54:08.4452704</datestamp><bib-version>v2</bib-version><id>59145</id><entry>2022-01-10</entry><title>On the difference of inverse coefficients of convex functions</title><swanseaauthors><author><sid>0e4f145bc8252e32a2293d49084a1fa5</sid><firstname>Derek</firstname><surname>Thomas</surname><name>Derek Thomas</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-01-10</date><deptcode>MACS</deptcode><abstract>Let f be analytic in the unit disk D={z&#x2208;C:|z|&lt;1}, and S be the subclass of normalised univalent functions given by f(z)=z+&#x2211;&#x221E;n=2anzn for z&#x2208;D. Let F be the inverse function of f defined in some set |&#x3C9;|&#x2264;r0(f), and be given by F(&#x3C9;)=&#x3C9;+&#x2211;&#x221E;n=2An&#x3C9;n. We prove the sharp inequalities &#x2212;1/3&#x2264;|A4|&#x2212;|A3|&#x2264;1/4 for the class K&#x2282;S of convex functions, thus providing an analogue to the known sharp inequalities &#x2212;1/3&#x2264;|a4|&#x2212;|a3|&#x2264;1/4, and giving another example of an invariance property amongst coefficient functionals of convex functions.</abstract><type>Journal Article</type><journal>The Journal of Analysis</journal><volume>30</volume><journalNumber>2</journalNumber><paginationStart>875</paginationStart><paginationEnd>893</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0971-3611</issnPrint><issnElectronic>2367-2501</issnElectronic><keywords>Difference of coefficients; Convex functions</keywords><publishedDay>1</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-06-01</publishedDate><doi>10.1007/s41478-021-00374-x</doi><url>http://dx.doi.org/10.1007/s41478-021-00374-x</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><lastEdited>2022-06-15T14:54:08.4452704</lastEdited><Created>2022-01-10T16:48:14.1394873</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Young Jae</firstname><surname>Sim</surname><order>1</order></author><author><firstname>Derek</firstname><surname>Thomas</surname><order>2</order></author></authors><documents><document><filename>59145__22106__c9310c0f472e4f1f81ecc1abed00b742.pdf</filename><originalFilename>59145.pdf</originalFilename><uploaded>2022-01-10T16:50:37.3869988</uploaded><type>Output</type><contentLength>314750</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright: Crown 2021. This article is licensed under a Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-06-15T14:54:08.4452704 v2 59145 2022-01-10 On the difference of inverse coefficients of convex functions 0e4f145bc8252e32a2293d49084a1fa5 Derek Thomas Derek Thomas true false 2022-01-10 MACS Let f be analytic in the unit disk D={z∈C:|z|<1}, and S be the subclass of normalised univalent functions given by f(z)=z+∑∞n=2anzn for z∈D. Let F be the inverse function of f defined in some set |ω|≤r0(f), and be given by F(ω)=ω+∑∞n=2Anωn. We prove the sharp inequalities −1/3≤|A4|−|A3|≤1/4 for the class K⊂S of convex functions, thus providing an analogue to the known sharp inequalities −1/3≤|a4|−|a3|≤1/4, and giving another example of an invariance property amongst coefficient functionals of convex functions. Journal Article The Journal of Analysis 30 2 875 893 Springer Science and Business Media LLC 0971-3611 2367-2501 Difference of coefficients; Convex functions 1 6 2022 2022-06-01 10.1007/s41478-021-00374-x http://dx.doi.org/10.1007/s41478-021-00374-x COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University SU Library paid the OA fee (TA Institutional Deal) 2022-06-15T14:54:08.4452704 2022-01-10T16:48:14.1394873 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Young Jae Sim 1 Derek Thomas 2 59145__22106__c9310c0f472e4f1f81ecc1abed00b742.pdf 59145.pdf 2022-01-10T16:50:37.3869988 Output 314750 application/pdf Version of Record true Copyright: Crown 2021. This article is licensed under a Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/licenses/by/4.0/
title On the difference of inverse coefficients of convex functions
spellingShingle On the difference of inverse coefficients of convex functions
Derek Thomas
title_short On the difference of inverse coefficients of convex functions
title_full On the difference of inverse coefficients of convex functions
title_fullStr On the difference of inverse coefficients of convex functions
title_full_unstemmed On the difference of inverse coefficients of convex functions
title_sort On the difference of inverse coefficients of convex functions
author_id_str_mv 0e4f145bc8252e32a2293d49084a1fa5
author_id_fullname_str_mv 0e4f145bc8252e32a2293d49084a1fa5_***_Derek Thomas
author Derek Thomas
author2 Young Jae Sim
Derek Thomas
format Journal article
container_title The Journal of Analysis
container_volume 30
container_issue 2
container_start_page 875
publishDate 2022
institution Swansea University
issn 0971-3611
2367-2501
doi_str_mv 10.1007/s41478-021-00374-x
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
url http://dx.doi.org/10.1007/s41478-021-00374-x
document_store_str 1
active_str 0
description Let f be analytic in the unit disk D={z∈C:|z|<1}, and S be the subclass of normalised univalent functions given by f(z)=z+∑∞n=2anzn for z∈D. Let F be the inverse function of f defined in some set |ω|≤r0(f), and be given by F(ω)=ω+∑∞n=2Anωn. We prove the sharp inequalities −1/3≤|A4|−|A3|≤1/4 for the class K⊂S of convex functions, thus providing an analogue to the known sharp inequalities −1/3≤|a4|−|a3|≤1/4, and giving another example of an invariance property amongst coefficient functionals of convex functions.
published_date 2022-06-01T02:25:22Z
_version_ 1821370558254678016
score 11.04748