Journal article 1292 views 548 downloads
Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization
Computer Methods in Applied Mechanics and Engineering, Volume: 390, Start page: 114532
Swansea University Authors:
PhD student Fu, Hywel Thomas , Chenfeng Li
-
PDF | Accepted Manuscript
©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (75.06MB)
DOI (Published version): 10.1016/j.cma.2021.114532
Abstract
Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization
| Published in: | Computer Methods in Applied Mechanics and Engineering |
|---|---|
| ISSN: | 0045-7825 |
| Published: |
Elsevier BV
2022
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa59176 |
| first_indexed |
2022-01-14T13:37:57Z |
|---|---|
| last_indexed |
2025-05-08T05:55:47Z |
| id |
cronfa59176 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-05-07T10:45:16.5285715</datestamp><bib-version>v2</bib-version><id>59176</id><entry>2022-01-14</entry><title>Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization</title><swanseaauthors><author><sid>e870d228a5035d2ef500eacbfc9f0302</sid><firstname>PhD student</firstname><surname>Fu</surname><name>PhD student Fu</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>08ebc76b093f3e17fed29281f5cb637e</sid><ORCID>0000-0002-3951-0409</ORCID><firstname>Hywel</firstname><surname>Thomas</surname><name>Hywel Thomas</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>82fe170d5ae2c840e538a36209e5a3ac</sid><ORCID>0000-0003-0441-211X</ORCID><firstname>Chenfeng</firstname><surname>Li</surname><name>Chenfeng Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-01-14</date><abstract/><type>Journal Article</type><journal>Computer Methods in Applied Mechanics and Engineering</journal><volume>390</volume><journalNumber/><paginationStart>114532</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0045-7825</issnPrint><issnElectronic/><keywords>Random heterogeneous media; Stochastic reconstruction; Machine learning-based characterization; Statistical equivalence; Microstructural descriptors</keywords><publishedDay>15</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-02-15</publishedDate><doi>10.1016/j.cma.2021.114532</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders>The authors would like to thank the support from China Scholarship Council (CSC Number: 201608440279), Swansea University (Zienkiewicz Scholarship), United Kingdom, the Royal Society (Ref.: IECNSFC191628) and the EPSRC, United Kingdom grant PURIFY (Ref.: EPV0007561).</funders><projectreference/><lastEdited>2025-05-07T10:45:16.5285715</lastEdited><Created>2022-01-14T13:33:07.7090579</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>PhD student</firstname><surname>Fu</surname><order>1</order></author><author><firstname>Dunhui</firstname><surname>Xiao</surname><order>2</order></author><author><firstname>Dongfeng</firstname><surname>Li</surname><order>3</order></author><author><firstname>Hywel</firstname><surname>Thomas</surname><orcid>0000-0002-3951-0409</orcid><order>4</order></author><author><firstname>Chenfeng</firstname><surname>Li</surname><orcid>0000-0003-0441-211X</orcid><order>5</order></author></authors><documents><document><filename>59176__22158__c010475e8e8b46b08ef05196b2ed3fe6.pdf</filename><originalFilename>59176.pdf</originalFilename><uploaded>2022-01-17T12:00:59.4949135</uploaded><type>Output</type><contentLength>78702793</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2023-01-11T00:00:00.0000000</embargoDate><documentNotes>©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-05-07T10:45:16.5285715 v2 59176 2022-01-14 Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization e870d228a5035d2ef500eacbfc9f0302 PhD student Fu PhD student Fu true false 08ebc76b093f3e17fed29281f5cb637e 0000-0002-3951-0409 Hywel Thomas Hywel Thomas true false 82fe170d5ae2c840e538a36209e5a3ac 0000-0003-0441-211X Chenfeng Li Chenfeng Li true false 2022-01-14 Journal Article Computer Methods in Applied Mechanics and Engineering 390 114532 Elsevier BV 0045-7825 Random heterogeneous media; Stochastic reconstruction; Machine learning-based characterization; Statistical equivalence; Microstructural descriptors 15 2 2022 2022-02-15 10.1016/j.cma.2021.114532 COLLEGE NANME COLLEGE CODE Swansea University The authors would like to thank the support from China Scholarship Council (CSC Number: 201608440279), Swansea University (Zienkiewicz Scholarship), United Kingdom, the Royal Society (Ref.: IECNSFC191628) and the EPSRC, United Kingdom grant PURIFY (Ref.: EPV0007561). 2025-05-07T10:45:16.5285715 2022-01-14T13:33:07.7090579 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering PhD student Fu 1 Dunhui Xiao 2 Dongfeng Li 3 Hywel Thomas 0000-0002-3951-0409 4 Chenfeng Li 0000-0003-0441-211X 5 59176__22158__c010475e8e8b46b08ef05196b2ed3fe6.pdf 59176.pdf 2022-01-17T12:00:59.4949135 Output 78702793 application/pdf Accepted Manuscript true 2023-01-11T00:00:00.0000000 ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| title |
Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization |
| spellingShingle |
Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization PhD student Fu Hywel Thomas Chenfeng Li |
| title_short |
Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization |
| title_full |
Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization |
| title_fullStr |
Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization |
| title_full_unstemmed |
Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization |
| title_sort |
Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization |
| author_id_str_mv |
e870d228a5035d2ef500eacbfc9f0302 08ebc76b093f3e17fed29281f5cb637e 82fe170d5ae2c840e538a36209e5a3ac |
| author_id_fullname_str_mv |
e870d228a5035d2ef500eacbfc9f0302_***_PhD student Fu 08ebc76b093f3e17fed29281f5cb637e_***_Hywel Thomas 82fe170d5ae2c840e538a36209e5a3ac_***_Chenfeng Li |
| author |
PhD student Fu Hywel Thomas Chenfeng Li |
| author2 |
PhD student Fu Dunhui Xiao Dongfeng Li Hywel Thomas Chenfeng Li |
| format |
Journal article |
| container_title |
Computer Methods in Applied Mechanics and Engineering |
| container_volume |
390 |
| container_start_page |
114532 |
| publishDate |
2022 |
| institution |
Swansea University |
| issn |
0045-7825 |
| doi_str_mv |
10.1016/j.cma.2021.114532 |
| publisher |
Elsevier BV |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
| document_store_str |
1 |
| active_str |
0 |
| published_date |
2022-02-15T16:47:11Z |
| _version_ |
1850687599786590208 |
| score |
11.08899 |

