No Cover Image

Journal article 851 views 228 downloads

Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization

PhD student Fu, Dunhui Xiao, Dongfeng Li, Hywel Thomas Orcid Logo, Chenfeng Li Orcid Logo

Computer Methods in Applied Mechanics and Engineering, Volume: 390, Start page: 114532

Swansea University Authors: PhD student Fu, Hywel Thomas Orcid Logo, Chenfeng Li Orcid Logo

  • 59176.pdf

    PDF | Accepted Manuscript

    ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)

    Download (75.06MB)
Published in: Computer Methods in Applied Mechanics and Engineering
ISSN: 0045-7825
Published: Elsevier BV 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa59176
first_indexed 2022-01-14T13:37:57Z
last_indexed 2023-01-11T14:40:16Z
id cronfa59176
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-10-31T19:54:36.4041400</datestamp><bib-version>v2</bib-version><id>59176</id><entry>2022-01-14</entry><title>Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization</title><swanseaauthors><author><sid>e870d228a5035d2ef500eacbfc9f0302</sid><firstname>PhD student</firstname><surname>Fu</surname><name>PhD student Fu</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>08ebc76b093f3e17fed29281f5cb637e</sid><ORCID>0000-0002-3951-0409</ORCID><firstname>Hywel</firstname><surname>Thomas</surname><name>Hywel Thomas</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>82fe170d5ae2c840e538a36209e5a3ac</sid><ORCID>0000-0003-0441-211X</ORCID><firstname>Chenfeng</firstname><surname>Li</surname><name>Chenfeng Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-01-14</date><abstract/><type>Journal Article</type><journal>Computer Methods in Applied Mechanics and Engineering</journal><volume>390</volume><journalNumber/><paginationStart>114532</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0045-7825</issnPrint><issnElectronic/><keywords>Random heterogeneous media; Stochastic reconstruction; Machine learning-based characterization; Statistical equivalence; Microstructural descriptors</keywords><publishedDay>15</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-02-15</publishedDate><doi>10.1016/j.cma.2021.114532</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders>The authors would like to thank the support from China Scholarship Council (CSC Number: 201608440279), Swansea University (Zienkiewicz Scholarship), United Kingdom, the Royal Society (Ref.: IECNSFC191628) and the EPSRC, United Kingdom grant PURIFY (Ref.: EPV0007561).</funders><projectreference/><lastEdited>2022-10-31T19:54:36.4041400</lastEdited><Created>2022-01-14T13:33:07.7090579</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>PhD student</firstname><surname>Fu</surname><order>1</order></author><author><firstname>Dunhui</firstname><surname>Xiao</surname><order>2</order></author><author><firstname>Dongfeng</firstname><surname>Li</surname><order>3</order></author><author><firstname>Hywel</firstname><surname>Thomas</surname><orcid>0000-0002-3951-0409</orcid><order>4</order></author><author><firstname>Chenfeng</firstname><surname>Li</surname><orcid>0000-0003-0441-211X</orcid><order>5</order></author></authors><documents><document><filename>59176__22158__c010475e8e8b46b08ef05196b2ed3fe6.pdf</filename><originalFilename>59176.pdf</originalFilename><uploaded>2022-01-17T12:00:59.4949135</uploaded><type>Output</type><contentLength>78702793</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2023-01-11T00:00:00.0000000</embargoDate><documentNotes>&#xA9;2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-10-31T19:54:36.4041400 v2 59176 2022-01-14 Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization e870d228a5035d2ef500eacbfc9f0302 PhD student Fu PhD student Fu true false 08ebc76b093f3e17fed29281f5cb637e 0000-0002-3951-0409 Hywel Thomas Hywel Thomas true false 82fe170d5ae2c840e538a36209e5a3ac 0000-0003-0441-211X Chenfeng Li Chenfeng Li true false 2022-01-14 Journal Article Computer Methods in Applied Mechanics and Engineering 390 114532 Elsevier BV 0045-7825 Random heterogeneous media; Stochastic reconstruction; Machine learning-based characterization; Statistical equivalence; Microstructural descriptors 15 2 2022 2022-02-15 10.1016/j.cma.2021.114532 COLLEGE NANME COLLEGE CODE Swansea University The authors would like to thank the support from China Scholarship Council (CSC Number: 201608440279), Swansea University (Zienkiewicz Scholarship), United Kingdom, the Royal Society (Ref.: IECNSFC191628) and the EPSRC, United Kingdom grant PURIFY (Ref.: EPV0007561). 2022-10-31T19:54:36.4041400 2022-01-14T13:33:07.7090579 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering PhD student Fu 1 Dunhui Xiao 2 Dongfeng Li 3 Hywel Thomas 0000-0002-3951-0409 4 Chenfeng Li 0000-0003-0441-211X 5 59176__22158__c010475e8e8b46b08ef05196b2ed3fe6.pdf 59176.pdf 2022-01-17T12:00:59.4949135 Output 78702793 application/pdf Accepted Manuscript true 2023-01-11T00:00:00.0000000 ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/
title Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization
spellingShingle Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization
PhD student Fu
Hywel Thomas
Chenfeng Li
title_short Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization
title_full Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization
title_fullStr Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization
title_full_unstemmed Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization
title_sort Stochastic reconstruction of 3D microstructures from 2D cross-sectional images using machine learning-based characterization
author_id_str_mv e870d228a5035d2ef500eacbfc9f0302
08ebc76b093f3e17fed29281f5cb637e
82fe170d5ae2c840e538a36209e5a3ac
author_id_fullname_str_mv e870d228a5035d2ef500eacbfc9f0302_***_PhD student Fu
08ebc76b093f3e17fed29281f5cb637e_***_Hywel Thomas
82fe170d5ae2c840e538a36209e5a3ac_***_Chenfeng Li
author PhD student Fu
Hywel Thomas
Chenfeng Li
author2 PhD student Fu
Dunhui Xiao
Dongfeng Li
Hywel Thomas
Chenfeng Li
format Journal article
container_title Computer Methods in Applied Mechanics and Engineering
container_volume 390
container_start_page 114532
publishDate 2022
institution Swansea University
issn 0045-7825
doi_str_mv 10.1016/j.cma.2021.114532
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering
document_store_str 1
active_str 0
published_date 2022-02-15T14:11:41Z
_version_ 1822411562520936448
score 11.048648