No Cover Image

Journal article 729 views 49 downloads

Dualties of adjoint QCD3 from branes

Adi Armoni Orcid Logo

Journal of High Energy Physics, Volume: 2022, Issue: 9

Swansea University Author: Adi Armoni Orcid Logo

  • 61176_VoR.pdf

    PDF | Version of Record

    Copyright: The Authors. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0)

    Download (277.89KB)

Abstract

We consider an ‘electric’ U(N) level k QCD3_{3}3​ theory with one adjoint Majorana fermion. Inspired by brane dynamics, we suggest that for k ≥ N/2 the massive m < 0 theory, in the vicinity of the supersymmetric point, admits a U(k−N2)−(12k+34N),−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-\l...

Full description

Published in: Journal of High Energy Physics
ISSN: 1029-8479
Published: Springer Science and Business Media LLC 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa61176
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: We consider an ‘electric’ U(N) level k QCD3_{3}3​ theory with one adjoint Majorana fermion. Inspired by brane dynamics, we suggest that for k ≥ N/2 the massive m < 0 theory, in the vicinity of the supersymmetric point, admits a U(k−N2)−(12k+34N),−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-\left(\frac{1}{2}k+\frac{3}{4}N\right),-\left(k+\frac{N}{2}\right)} U(k−2N​)−(21​k+43​N),−(k+2N​)​ ‘magnetic’ dual with one adjoint Majorana fermion. The magnetic theory flows in the IR to a topological U(k−N2)−N,−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-N,-\left(k+\frac{N}{2}\right)} U(k−2N​)−N,−(k+2N​)​ pure Chern-Simons theory in agreement with the dynamics of the electric theory. When k < N/2 the magnetic dual is U(N2−k)12k+34N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}k+\frac{3}{4}N,N} U(2N​−k)21​k+43​N,N​ with one adjoint Majorana fermion. Depending on the sign of the fermion mass, the magnetic theory flows to either U(N2−k)N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{N,N} U(2N​−k)N,N​ or U(N2−k)12N+k,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}N+k,N} U(2N​−k)21​N+k,N​ TQFT. A second magnetic theory, U(N/2+k)12k−34N,N \mathrm{U}{\left(N/2+k\right)}_{\frac{1}{2}k-\frac{3}{4}N,N} U(N/2+k)21​k−43​N,N​, flows to either U(N2+k)−N,−N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-N,-N} U(2N​+k)−N,−N​ or U(N2+k)−(12N−k),−N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-\left(\frac{1}{2}N-k\right),-N} U(2N​+k)−(21​N−k),−N​ TQFT. Dualities for SO and USp theories with one adjoint fermion are also discussed.
Keywords: Brane Dynamics in Gauge Theories, Chern-Simons Theories, Duality in Gauge Field Theories, Supersymmetry and Dua
College: Faculty of Science and Engineering
Funders: Article funded by SCOAP
Issue: 9