No Cover Image

Journal article 729 views 49 downloads

Dualties of adjoint QCD3 from branes

Adi Armoni Orcid Logo

Journal of High Energy Physics, Volume: 2022, Issue: 9

Swansea University Author: Adi Armoni Orcid Logo

  • 61176_VoR.pdf

    PDF | Version of Record

    Copyright: The Authors. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0)

    Download (277.89KB)

Abstract

We consider an ‘electric’ U(N) level k QCD3_{3}3​ theory with one adjoint Majorana fermion. Inspired by brane dynamics, we suggest that for k ≥ N/2 the massive m < 0 theory, in the vicinity of the supersymmetric point, admits a U(k−N2)−(12k+34N),−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-\l...

Full description

Published in: Journal of High Energy Physics
ISSN: 1029-8479
Published: Springer Science and Business Media LLC 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa61176
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-09-12T09:18:42Z
last_indexed 2023-01-13T19:21:47Z
id cronfa61176
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-10-06T14:30:18.8414692</datestamp><bib-version>v2</bib-version><id>61176</id><entry>2022-09-12</entry><title>Dualties of adjoint QCD3 from branes</title><swanseaauthors><author><sid>3f75faad0563a2d3b191191a2efee956</sid><ORCID>0000-0002-8105-0645</ORCID><firstname>Adi</firstname><surname>Armoni</surname><name>Adi Armoni</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-09-12</date><deptcode>SPH</deptcode><abstract>We consider an &#x2018;electric&#x2019; U(N) level k QCD3_{3}3&#x200B; theory with one adjoint Majorana fermion. Inspired by brane dynamics, we suggest that for k &#x2265; N/2 the massive m &lt; 0 theory, in the vicinity of the supersymmetric point, admits a U(k&#x2212;N2)&#x2212;(12k+34N),&#x2212;(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-\left(\frac{1}{2}k+\frac{3}{4}N\right),-\left(k+\frac{N}{2}\right)} U(k&#x2212;2N&#x200B;)&#x2212;(21&#x200B;k+43&#x200B;N),&#x2212;(k+2N&#x200B;)&#x200B; &#x2018;magnetic&#x2019; dual with one adjoint Majorana fermion. The magnetic theory flows in the IR to a topological U(k&#x2212;N2)&#x2212;N,&#x2212;(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-N,-\left(k+\frac{N}{2}\right)} U(k&#x2212;2N&#x200B;)&#x2212;N,&#x2212;(k+2N&#x200B;)&#x200B; pure Chern-Simons theory in agreement with the dynamics of the electric theory. When k &lt; N/2 the magnetic dual is U(N2&#x2212;k)12k+34N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}k+\frac{3}{4}N,N} U(2N&#x200B;&#x2212;k)21&#x200B;k+43&#x200B;N,N&#x200B; with one adjoint Majorana fermion. Depending on the sign of the fermion mass, the magnetic theory flows to either U(N2&#x2212;k)N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{N,N} U(2N&#x200B;&#x2212;k)N,N&#x200B; or U(N2&#x2212;k)12N+k,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}N+k,N} U(2N&#x200B;&#x2212;k)21&#x200B;N+k,N&#x200B; TQFT. A second magnetic theory, U(N/2+k)12k&#x2212;34N,N \mathrm{U}{\left(N/2+k\right)}_{\frac{1}{2}k-\frac{3}{4}N,N} U(N/2+k)21&#x200B;k&#x2212;43&#x200B;N,N&#x200B;, flows to either U(N2+k)&#x2212;N,&#x2212;N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-N,-N} U(2N&#x200B;+k)&#x2212;N,&#x2212;N&#x200B; or U(N2+k)&#x2212;(12N&#x2212;k),&#x2212;N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-\left(\frac{1}{2}N-k\right),-N} U(2N&#x200B;+k)&#x2212;(21&#x200B;N&#x2212;k),&#x2212;N&#x200B; TQFT. Dualities for SO and USp theories with one adjoint fermion are also discussed.</abstract><type>Journal Article</type><journal>Journal of High Energy Physics</journal><volume>2022</volume><journalNumber>9</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1029-8479</issnElectronic><keywords>Brane Dynamics in Gauge Theories, Chern-Simons Theories, Duality in Gauge Field Theories, Supersymmetry and Dua</keywords><publishedDay>8</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-09-08</publishedDate><doi>10.1007/jhep09(2022)073</doi><url/><notes/><college>COLLEGE NANME</college><department>Physics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SPH</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>Article funded by SCOAP</funders><projectreference/><lastEdited>2022-10-06T14:30:18.8414692</lastEdited><Created>2022-09-12T10:14:34.7433135</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Adi</firstname><surname>Armoni</surname><orcid>0000-0002-8105-0645</orcid><order>1</order></author></authors><documents><document><filename>61176__25330__62de896dac1e44ef82b97d0412c293cf.pdf</filename><originalFilename>61176_VoR.pdf</originalFilename><uploaded>2022-10-06T14:28:44.5439151</uploaded><type>Output</type><contentLength>284559</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright: The Authors. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-10-06T14:30:18.8414692 v2 61176 2022-09-12 Dualties of adjoint QCD3 from branes 3f75faad0563a2d3b191191a2efee956 0000-0002-8105-0645 Adi Armoni Adi Armoni true false 2022-09-12 SPH We consider an ‘electric’ U(N) level k QCD3_{3}3​ theory with one adjoint Majorana fermion. Inspired by brane dynamics, we suggest that for k ≥ N/2 the massive m < 0 theory, in the vicinity of the supersymmetric point, admits a U(k−N2)−(12k+34N),−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-\left(\frac{1}{2}k+\frac{3}{4}N\right),-\left(k+\frac{N}{2}\right)} U(k−2N​)−(21​k+43​N),−(k+2N​)​ ‘magnetic’ dual with one adjoint Majorana fermion. The magnetic theory flows in the IR to a topological U(k−N2)−N,−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-N,-\left(k+\frac{N}{2}\right)} U(k−2N​)−N,−(k+2N​)​ pure Chern-Simons theory in agreement with the dynamics of the electric theory. When k < N/2 the magnetic dual is U(N2−k)12k+34N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}k+\frac{3}{4}N,N} U(2N​−k)21​k+43​N,N​ with one adjoint Majorana fermion. Depending on the sign of the fermion mass, the magnetic theory flows to either U(N2−k)N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{N,N} U(2N​−k)N,N​ or U(N2−k)12N+k,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}N+k,N} U(2N​−k)21​N+k,N​ TQFT. A second magnetic theory, U(N/2+k)12k−34N,N \mathrm{U}{\left(N/2+k\right)}_{\frac{1}{2}k-\frac{3}{4}N,N} U(N/2+k)21​k−43​N,N​, flows to either U(N2+k)−N,−N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-N,-N} U(2N​+k)−N,−N​ or U(N2+k)−(12N−k),−N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-\left(\frac{1}{2}N-k\right),-N} U(2N​+k)−(21​N−k),−N​ TQFT. Dualities for SO and USp theories with one adjoint fermion are also discussed. Journal Article Journal of High Energy Physics 2022 9 Springer Science and Business Media LLC 1029-8479 Brane Dynamics in Gauge Theories, Chern-Simons Theories, Duality in Gauge Field Theories, Supersymmetry and Dua 8 9 2022 2022-09-08 10.1007/jhep09(2022)073 COLLEGE NANME Physics COLLEGE CODE SPH Swansea University Not Required Article funded by SCOAP 2022-10-06T14:30:18.8414692 2022-09-12T10:14:34.7433135 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Adi Armoni 0000-0002-8105-0645 1 61176__25330__62de896dac1e44ef82b97d0412c293cf.pdf 61176_VoR.pdf 2022-10-06T14:28:44.5439151 Output 284559 application/pdf Version of Record true Copyright: The Authors. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0) true eng http://creativecommons.org/licenses/by/4.0/
title Dualties of adjoint QCD3 from branes
spellingShingle Dualties of adjoint QCD3 from branes
Adi Armoni
title_short Dualties of adjoint QCD3 from branes
title_full Dualties of adjoint QCD3 from branes
title_fullStr Dualties of adjoint QCD3 from branes
title_full_unstemmed Dualties of adjoint QCD3 from branes
title_sort Dualties of adjoint QCD3 from branes
author_id_str_mv 3f75faad0563a2d3b191191a2efee956
author_id_fullname_str_mv 3f75faad0563a2d3b191191a2efee956_***_Adi Armoni
author Adi Armoni
author2 Adi Armoni
format Journal article
container_title Journal of High Energy Physics
container_volume 2022
container_issue 9
publishDate 2022
institution Swansea University
issn 1029-8479
doi_str_mv 10.1007/jhep09(2022)073
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description We consider an ‘electric’ U(N) level k QCD3_{3}3​ theory with one adjoint Majorana fermion. Inspired by brane dynamics, we suggest that for k ≥ N/2 the massive m < 0 theory, in the vicinity of the supersymmetric point, admits a U(k−N2)−(12k+34N),−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-\left(\frac{1}{2}k+\frac{3}{4}N\right),-\left(k+\frac{N}{2}\right)} U(k−2N​)−(21​k+43​N),−(k+2N​)​ ‘magnetic’ dual with one adjoint Majorana fermion. The magnetic theory flows in the IR to a topological U(k−N2)−N,−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-N,-\left(k+\frac{N}{2}\right)} U(k−2N​)−N,−(k+2N​)​ pure Chern-Simons theory in agreement with the dynamics of the electric theory. When k < N/2 the magnetic dual is U(N2−k)12k+34N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}k+\frac{3}{4}N,N} U(2N​−k)21​k+43​N,N​ with one adjoint Majorana fermion. Depending on the sign of the fermion mass, the magnetic theory flows to either U(N2−k)N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{N,N} U(2N​−k)N,N​ or U(N2−k)12N+k,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}N+k,N} U(2N​−k)21​N+k,N​ TQFT. A second magnetic theory, U(N/2+k)12k−34N,N \mathrm{U}{\left(N/2+k\right)}_{\frac{1}{2}k-\frac{3}{4}N,N} U(N/2+k)21​k−43​N,N​, flows to either U(N2+k)−N,−N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-N,-N} U(2N​+k)−N,−N​ or U(N2+k)−(12N−k),−N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-\left(\frac{1}{2}N-k\right),-N} U(2N​+k)−(21​N−k),−N​ TQFT. Dualities for SO and USp theories with one adjoint fermion are also discussed.
published_date 2022-09-08T04:19:49Z
_version_ 1763754314250059776
score 11.035349