Journal article 729 views 49 downloads
Dualties of adjoint QCD3 from branes
Journal of High Energy Physics, Volume: 2022, Issue: 9
Swansea University Author: Adi Armoni
-
PDF | Version of Record
Copyright: The Authors. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0)
Download (277.89KB)
DOI (Published version): 10.1007/jhep09(2022)073
Abstract
We consider an ‘electric’ U(N) level k QCD3_{3}3 theory with one adjoint Majorana fermion. Inspired by brane dynamics, we suggest that for k ≥ N/2 the massive m < 0 theory, in the vicinity of the supersymmetric point, admits a U(k−N2)−(12k+34N),−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-\l...
Published in: | Journal of High Energy Physics |
---|---|
ISSN: | 1029-8479 |
Published: |
Springer Science and Business Media LLC
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa61176 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2022-09-12T09:18:42Z |
---|---|
last_indexed |
2023-01-13T19:21:47Z |
id |
cronfa61176 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-10-06T14:30:18.8414692</datestamp><bib-version>v2</bib-version><id>61176</id><entry>2022-09-12</entry><title>Dualties of adjoint QCD3 from branes</title><swanseaauthors><author><sid>3f75faad0563a2d3b191191a2efee956</sid><ORCID>0000-0002-8105-0645</ORCID><firstname>Adi</firstname><surname>Armoni</surname><name>Adi Armoni</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-09-12</date><deptcode>SPH</deptcode><abstract>We consider an ‘electric’ U(N) level k QCD3_{3}3​ theory with one adjoint Majorana fermion. Inspired by brane dynamics, we suggest that for k ≥ N/2 the massive m < 0 theory, in the vicinity of the supersymmetric point, admits a U(k−N2)−(12k+34N),−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-\left(\frac{1}{2}k+\frac{3}{4}N\right),-\left(k+\frac{N}{2}\right)} U(k−2N​)−(21​k+43​N),−(k+2N​)​ ‘magnetic’ dual with one adjoint Majorana fermion. The magnetic theory flows in the IR to a topological U(k−N2)−N,−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-N,-\left(k+\frac{N}{2}\right)} U(k−2N​)−N,−(k+2N​)​ pure Chern-Simons theory in agreement with the dynamics of the electric theory. When k < N/2 the magnetic dual is U(N2−k)12k+34N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}k+\frac{3}{4}N,N} U(2N​−k)21​k+43​N,N​ with one adjoint Majorana fermion. Depending on the sign of the fermion mass, the magnetic theory flows to either U(N2−k)N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{N,N} U(2N​−k)N,N​ or U(N2−k)12N+k,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}N+k,N} U(2N​−k)21​N+k,N​ TQFT. A second magnetic theory, U(N/2+k)12k−34N,N \mathrm{U}{\left(N/2+k\right)}_{\frac{1}{2}k-\frac{3}{4}N,N} U(N/2+k)21​k−43​N,N​, flows to either U(N2+k)−N,−N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-N,-N} U(2N​+k)−N,−N​ or U(N2+k)−(12N−k),−N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-\left(\frac{1}{2}N-k\right),-N} U(2N​+k)−(21​N−k),−N​ TQFT. Dualities for SO and USp theories with one adjoint fermion are also discussed.</abstract><type>Journal Article</type><journal>Journal of High Energy Physics</journal><volume>2022</volume><journalNumber>9</journalNumber><paginationStart/><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1029-8479</issnElectronic><keywords>Brane Dynamics in Gauge Theories, Chern-Simons Theories, Duality in Gauge Field Theories, Supersymmetry and Dua</keywords><publishedDay>8</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-09-08</publishedDate><doi>10.1007/jhep09(2022)073</doi><url/><notes/><college>COLLEGE NANME</college><department>Physics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SPH</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>Article funded by SCOAP</funders><projectreference/><lastEdited>2022-10-06T14:30:18.8414692</lastEdited><Created>2022-09-12T10:14:34.7433135</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Adi</firstname><surname>Armoni</surname><orcid>0000-0002-8105-0645</orcid><order>1</order></author></authors><documents><document><filename>61176__25330__62de896dac1e44ef82b97d0412c293cf.pdf</filename><originalFilename>61176_VoR.pdf</originalFilename><uploaded>2022-10-06T14:28:44.5439151</uploaded><type>Output</type><contentLength>284559</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright: The Authors. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-10-06T14:30:18.8414692 v2 61176 2022-09-12 Dualties of adjoint QCD3 from branes 3f75faad0563a2d3b191191a2efee956 0000-0002-8105-0645 Adi Armoni Adi Armoni true false 2022-09-12 SPH We consider an ‘electric’ U(N) level k QCD3_{3}3 theory with one adjoint Majorana fermion. Inspired by brane dynamics, we suggest that for k ≥ N/2 the massive m < 0 theory, in the vicinity of the supersymmetric point, admits a U(k−N2)−(12k+34N),−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-\left(\frac{1}{2}k+\frac{3}{4}N\right),-\left(k+\frac{N}{2}\right)} U(k−2N)−(21k+43N),−(k+2N) ‘magnetic’ dual with one adjoint Majorana fermion. The magnetic theory flows in the IR to a topological U(k−N2)−N,−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-N,-\left(k+\frac{N}{2}\right)} U(k−2N)−N,−(k+2N) pure Chern-Simons theory in agreement with the dynamics of the electric theory. When k < N/2 the magnetic dual is U(N2−k)12k+34N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}k+\frac{3}{4}N,N} U(2N−k)21k+43N,N with one adjoint Majorana fermion. Depending on the sign of the fermion mass, the magnetic theory flows to either U(N2−k)N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{N,N} U(2N−k)N,N or U(N2−k)12N+k,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}N+k,N} U(2N−k)21N+k,N TQFT. A second magnetic theory, U(N/2+k)12k−34N,N \mathrm{U}{\left(N/2+k\right)}_{\frac{1}{2}k-\frac{3}{4}N,N} U(N/2+k)21k−43N,N, flows to either U(N2+k)−N,−N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-N,-N} U(2N+k)−N,−N or U(N2+k)−(12N−k),−N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-\left(\frac{1}{2}N-k\right),-N} U(2N+k)−(21N−k),−N TQFT. Dualities for SO and USp theories with one adjoint fermion are also discussed. Journal Article Journal of High Energy Physics 2022 9 Springer Science and Business Media LLC 1029-8479 Brane Dynamics in Gauge Theories, Chern-Simons Theories, Duality in Gauge Field Theories, Supersymmetry and Dua 8 9 2022 2022-09-08 10.1007/jhep09(2022)073 COLLEGE NANME Physics COLLEGE CODE SPH Swansea University Not Required Article funded by SCOAP 2022-10-06T14:30:18.8414692 2022-09-12T10:14:34.7433135 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Adi Armoni 0000-0002-8105-0645 1 61176__25330__62de896dac1e44ef82b97d0412c293cf.pdf 61176_VoR.pdf 2022-10-06T14:28:44.5439151 Output 284559 application/pdf Version of Record true Copyright: The Authors. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0) true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Dualties of adjoint QCD3 from branes |
spellingShingle |
Dualties of adjoint QCD3 from branes Adi Armoni |
title_short |
Dualties of adjoint QCD3 from branes |
title_full |
Dualties of adjoint QCD3 from branes |
title_fullStr |
Dualties of adjoint QCD3 from branes |
title_full_unstemmed |
Dualties of adjoint QCD3 from branes |
title_sort |
Dualties of adjoint QCD3 from branes |
author_id_str_mv |
3f75faad0563a2d3b191191a2efee956 |
author_id_fullname_str_mv |
3f75faad0563a2d3b191191a2efee956_***_Adi Armoni |
author |
Adi Armoni |
author2 |
Adi Armoni |
format |
Journal article |
container_title |
Journal of High Energy Physics |
container_volume |
2022 |
container_issue |
9 |
publishDate |
2022 |
institution |
Swansea University |
issn |
1029-8479 |
doi_str_mv |
10.1007/jhep09(2022)073 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
1 |
active_str |
0 |
description |
We consider an ‘electric’ U(N) level k QCD3_{3}3 theory with one adjoint Majorana fermion. Inspired by brane dynamics, we suggest that for k ≥ N/2 the massive m < 0 theory, in the vicinity of the supersymmetric point, admits a U(k−N2)−(12k+34N),−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-\left(\frac{1}{2}k+\frac{3}{4}N\right),-\left(k+\frac{N}{2}\right)} U(k−2N)−(21k+43N),−(k+2N) ‘magnetic’ dual with one adjoint Majorana fermion. The magnetic theory flows in the IR to a topological U(k−N2)−N,−(k+N2) \mathrm{U}{\left(k-\frac{N}{2}\right)}_{-N,-\left(k+\frac{N}{2}\right)} U(k−2N)−N,−(k+2N) pure Chern-Simons theory in agreement with the dynamics of the electric theory. When k < N/2 the magnetic dual is U(N2−k)12k+34N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}k+\frac{3}{4}N,N} U(2N−k)21k+43N,N with one adjoint Majorana fermion. Depending on the sign of the fermion mass, the magnetic theory flows to either U(N2−k)N,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{N,N} U(2N−k)N,N or U(N2−k)12N+k,N \mathrm{U}{\left(\frac{N}{2}-k\right)}_{\frac{1}{2}N+k,N} U(2N−k)21N+k,N TQFT. A second magnetic theory, U(N/2+k)12k−34N,N \mathrm{U}{\left(N/2+k\right)}_{\frac{1}{2}k-\frac{3}{4}N,N} U(N/2+k)21k−43N,N, flows to either U(N2+k)−N,−N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-N,-N} U(2N+k)−N,−N or U(N2+k)−(12N−k),−N \mathrm{U}{\left(\frac{N}{2}+k\right)}_{-\left(\frac{1}{2}N-k\right),-N} U(2N+k)−(21N−k),−N TQFT. Dualities for SO and USp theories with one adjoint fermion are also discussed. |
published_date |
2022-09-08T04:19:49Z |
_version_ |
1763754314250059776 |
score |
11.035349 |