No Cover Image

Journal article 55 views 11 downloads

Orbital learning: a novel, actively orchestrated decentralised learning for healthcare

Neeraj Kavan Chakshu, Perumal Nithiarasu Orcid Logo

Scientific Reports, Volume: 14, Issue: 1

Swansea University Authors: Neeraj Kavan Chakshu, Perumal Nithiarasu Orcid Logo

  • 66208.VoR.pdf

    PDF | Version of Record

    © The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License.

    Download (1.58MB)

Abstract

A novel collaborative and continual learning across a network of decentralised healthcare units, avoiding identifiable data-sharing capacity, is proposed. Currently available methodologies, such as federated learning and swarm learning, have demonstrated decentralised learning. However, the majority...

Full description

Published in: Scientific Reports
ISSN: 2045-2322
Published: Springer Science and Business Media LLC 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa66208
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: A novel collaborative and continual learning across a network of decentralised healthcare units, avoiding identifiable data-sharing capacity, is proposed. Currently available methodologies, such as federated learning and swarm learning, have demonstrated decentralised learning. However, the majority of them face shortcomings that affect their performance and accuracy. These shortcomings include a non-uniform rate of data accumulation, non-uniform patient demographics, biased human labelling, and erroneous or malicious training data. A novel method to reduce such shortcomings is proposed in the present work through selective grouping and displacing of actors in a network of many entities for intra-group sharing of learning with inter-group accessibility. The proposed system, known as Orbital Learning, incorporates various features from split learning and ensemble learning for a robust and secure performance of supervised models. A digital embodiment of the information quality and flow within a decentralised network, this platform also acts as a digital twin of healthcare network. An example of ECG classification for arrhythmia with 6 clients is used to analyse its performance and is compared against federated learning. In this example, four separate experiments are conducted with varied configurations, such as varied age demographics and clients with data tampering. The results obtained show an average area under receiver operating characteristic curve (AUROC) of 0.819 (95% CI 0.784–0.853) for orbital learning whereas 0.714 (95% CI 0.692–0.736) for federated learning. This result shows an increase in overall performance and establishes that the proposed system can address the majority of the issues faced by existing decentralised learning methodologies. Further, a scalability demo conducted establishes the versatility and scalability of this platform in handling state-of-the-art large language models.
Keywords: Decentralised learning; Digital health; Data security; Data privacy
College: Faculty of Science and Engineering
Funders: The first author would like to thank IMPACT at Swansea University for funding and supporting this project during their fellowship. Authors would also like to acknowledge Faculty of Science and Engineering, Swansea University for their support. This work was partially supported through Impact Acceleration Account grant number: EP/X525637/1.
Issue: 1